Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 15 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
15
Dung lượng
519,49 KB
Nội dung
Hindawi Publishing Corporation Fixed Point Theory and Applications Volume 2010, Article ID 783178, 15 pages doi:10.1155/2010/783178 ResearchArticleConvergenceofThree-StepIterationsSchemeforNonselfAsymptoticallyNonexpansive Mappings Seyit Temir Department of Mathematics, Art, and Science Faculty, Harran University, 63200 Sanliurfa, Turkey Correspondence should be addressed to Seyit Temir, temirseyit@harran.edu.tr Received 15 February 2010; Revised 2 May 2010; Accepted 30 June 2010 Academic Editor: Jerzy Jezierski Copyright q 2010 Seyit Temir. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Weak and strong convergence theorems ofthree-stepiterations are established fornonselfasymptoticallynonexpansive mappings in uniformly convex Banach space. The results obtained in this paper extend and improve the recent ones announced by Suantai 2005, Khan and Hussain 2008, Nilsrakoo and Saejung 2006, and many others. 1. Introduction Suppose that X is a real uniformly convex Banach space, K is a nonempty closed convex subset of X.LetT be a self-mapping of K. A mapping T is called nonexpansive provided Tx − Ty ≤ x − y 1.1 for all x, y ∈ K. T is called asymptoticallynonexpansive mapping if there exists a sequence {k n }⊂1, ∞ with lim n →∞ k n 1 such that T n x − T n y ≤ k n x − y 1.2 for all x, y ∈ K and n ≥ 1. The class ofasymptoticallynonexpansive maps which is an important generalization of the class nonexpansive maps was introduced by Goebel and Kirk 1. They proved that 2 Fixed Point Theory and Applications every asymptoticallynonexpansive self-mapping of a nonempty closed convex bounded subset of a uniformly convex Banach space has a fixed point. T is called uniformly L-Lipschitzian if there exists a constant L>0 such that for all x, y ∈ K, the following inequality holds: T n x − T n y ≤ L x − y 1.3 for all n ≥ 1. Asymptoticallynonexpansive self-mappings using Ishikawa iterative and the Mann iterative processes have been studied extensively by various authors to approximate fixed points ofasymptoticallynonexpansive mappings see 1, 2. Noor 3 introduced a three- step iterative scheme and studied the approximate solutions of variational inclusion in Hilbert spaces. Glowinski and Le Tallec 4 applied a three-step iterative process for finding the approximate solutions of liquid crystal theory, and eigenvalue computation. It has been shown in 1 that the three-step iterative scheme gives better numerical results than the two-step and one-step approximate iterations. Xu and Noor 5 introduced and studied a three-stepscheme to approximate fixed point ofasymptoticallynonexpansive mappings in a Banach space. Very recently, Nilsrakoo and Saejung 6 and Suantai 7 defined new three-stepiterations which are extensions of Noor iterations and gave some weak and strong convergence theorems of the modified Noor iterationsforasymptoticallynonexpansive mappings in Banach space. It is clear that the modified Noor iterations include Mann iterations 8, Ishikawa iterations 9, and original Noor iterations 3 as special cases. Consequently, results obtained in this paper can be considered as a refinement and improvement of the previously known results z n a n T n x n 1 − a n x n , y n b n T n z n c n T n x n 1 − b n − c n x n , x n1 α n T n y n β n T n z n γ n T n x n 1 − α n − β n − γ n x n , ∀n ≥ 1, 1.4 where {a n }, {b n }, {c n }, {b n c n }, {α n }, {β n }, {γ n },and{α n β n γ n } in 0, 1 satisfy certain conditions. If {γ n } 0, then 1.4 reduces to the modified Noor iterations defined by Suantai 7 as follows: z n a n T n x n 1 − a n x n , y n b n T n z n c n T n x n 1 − b n − c n x n , x n1 α n T n y n β n T n z n 1 − α n − β n x n , ∀n ≥ 1, 1.5 where {a n }, {b n }, {c n }, {b n c n }, {α n }, {β n } and {α n β n } in 0, 1 satisfy certain conditions. Fixed Point Theory and Applications 3 If {c n } {β n } {γ n } 0, then 1.4 reduces to Noor iterations defined by Xu and Noor 5 as follows: z n a n T n x n 1 − a n x n , y n b n T n z n 1 − b n x n , x n1 α n T n y n 1 − α n x n , ∀n ≥ 1. 1.6 If {a n } {c n } {β n } {γ n } 0, then 1.4 reduces t o modified Ishikawa iterations as follows: y n b n T n z n 1 − b n x n , x n1 α n T n y n 1 − α n x n , ∀n ≥ 1. 1.7 If {a n } {b n } {c n } {β n } {γ n } 0, then 1.4 reduces to Mann iterative process as follows: x n1 α n T n x n 1 − α n x n , ∀n ≥ 1. 1.8 Let X be a real normed space and K be a nonempty subset of X.AsubsetK of X is called a retract of X if there exists a continuous map P : X → K such that Px x for all x ∈ K. Every closed convex subset of a uniformly convex Banach space is a rectract. A map P : X → K is called a retraction if P 2 P. In particular, a subset K is called a nonexpansive retract of X if there exists a nonexpansive retraction P : X → K such that Px x for all x ∈ K. Iterative techniques for converging fixed points ofnonexpansive nonself-mappings have been studied by many authors see, e.g., Khan and Hussain 10,Wang11. Evidently, we can obtain the corresponding nonself-versions of 1.5−1.7. We will obtain the weak and strong convergence theorems using 1.12 fornonselfasymptoticallynonexpansive mappings in a uniformly convex Banach space. Very recently, Suantai 7 introduced iterative process and used it for the weak and strong convergenceof fixed points of self-mappings in a uniformly convex Banach space. As remarked earlier, Suantai 7 has established weak and strong convergence criteria forasymptoticallynonexpansive self-mappings, while Chidume et al. 12 studied the Mann iterative process for the case of nonself-mappings. Our results will thus improve and generalize corresponding results of Suantai 7 and others for nonself- mappings and those of Chidume et al. 12 in the sense that our iterative process contains the one used by them. The concept ofnonselfasymptoticallynonexpansive mappings was introduced by Chidume et al. 12 as the generalization ofasymptoticallynonexpansive self- mappings and obtained some strong and weak convergence theorems for such mappings given 1.9 as follows: for x 1 ∈ K, y n P β n T PT n−1 x n 1 − β n x n , x n1 P α n T PT n−1 y n 1 − α n x n , ∀n ≥ 1, 1.9 where {α n } and {β n }⊂δ, 1 − δ for some δ ∈ 0, 1. 4 Fixed Point Theory and Applications A nonself-mapping T is called asymptoticallynonexpansive if there exists a sequence {k n }⊂1, ∞ with lim n →∞ k n 1 such that T PT n−1 x − T PT n−1 y ≤ k n x − y 1.10 for all x, y ∈ K,andn ≥ 1. T is called uniformly L-Lipschitzian if there exists constant L>0 such that T PT n−1 x − T PT n−1 y ≤ L x − y 1.11 for all x, y ∈ K,andn ≥ 1. From the above definition, it is obvious that nonselfasymptoticallynonexpansive mappings are uniformly L-Lipschitzian. Now, we give the following nonself-version of 1.4: for x 1 ∈ K, z n P a n T PT n−1 x n 1 − a n x n , y n P b n T PT n−1 z n c n T PT n−1 x n 1 − b n − c n x n , x n1 P α n T PT n−1 y n β n T PT n−1 z n γ n T PT n−1 x n 1 − α n − β n − γ n x n , 1.12 for all n ≥ 1, where {a n }, {b n }, {c n }, {b n c n }, {α n }, {β n }, {γ n },and{α n β n γ n } in 0, 1 satisfy certain conditions. The aim of this paper is to prove the weak and strong convergenceof the three-step iterative sequence fornonselfasymptoticallynonexpansive mappings in a real uniformly convex Banach space. The results presented in this paper improve and generalize some recent papers by Suantai 7, Khan and Hussain 10, Nilsrakoo and Saejung 6, and many others. 2. Preliminaries Throughout this paper, we assume that X is a real Banach space, K is a nonempty closed convex subset of X,andFT is the set of fixed points of mapping T. A Banach space X is said to be uniformly convex if the modulus of convexity of X is as follows: δ ε inf 1 − x y 2 : x y 1, x − y ε > 0, 2.1 for all 0 <ε≤ 2 i.e., δε is a function 0, 2 → 0, 1. Recall that a Banach space X is said to satisfy Opial’s condition 13 if, for each sequence {x n } in X, the condition x n → x weakly as n →∞and for all y ∈ X with y / x implies that lim sup n →∞ x n − x < lim sup n →∞ x n − y . 2.2 Fixed Point Theory and Applications 5 Lemma 2.1 see 12. Let X be a uniformly convex Banach space, K a nonempty closed convex subset of X and T : K → X a nonselfasymptoticallynonexpansive mapping with a sequence {k n }⊂ 1, ∞ and lim n →∞ k n 1,thenI − T is demiclosed at zero. Lemma 2.2 see 12. Let X be a real uniformly convex Banach space, K a nonempty closed subset of X with P as a sunny nonexpansive retraction and T : K → X a mapping satisfying weakly inward condition, then FPTFT. Lemma 2.3 see 14. Let {s n }, {t n }, and {σ n } be sequences of nonnegative real sequences satisfying the following conditions: for all n ≥ 1, s n1 ≤ 1 σ n s n t n ,where ∞ n0 σ n < ∞ and ∞ n0 t n < ∞, then lim n →∞ s n exists. Lemma 2.4 see 6. Let X be a uniformly convex Banach space and B R : {x ∈ X : x≤ R},R>0, then there exists a continuous strictly increasing convex function g : 0, ∞ → 0, ∞ with g00 such that λx μy ξz νw 2 ≤ λ x 2 μ y 2 ξ z 2 ν w 2 − 1 3 ν λg x − w μg y − w ξg z − w , 2.3 for all x, y, z, w ∈ B r , and λ, μ, ξ, ν ∈ 0, 1 with λ μ ξ ν 1. Lemma 2.5 See 7, Lemma 2.7. Let X be a Banach space which satisfies Opial’s condition and let x n be a sequence in X.Letq 1 ,q 2 ∈ X be such that lim n →∞ x n − q 1 and lim n →∞ x n − q 2 .If{x n k }, {x n j } are the subsequences of {x n } which converge weakly to q 1 ,q 2 ∈ X, respectively, then q 1 q 2 . 3. Main Results In this section, we prove theorems of weak and strong of the three-step iterative scheme given in 1.12 to a fixed point fornonselfasymptoticallynonexpansive mappings in a uniformly convex Banach space. In order to prove our main results the followings lemmas are needed. Lemma 3.1. If {b n } and {c n } are sequences in 0, 1 such that lim sup n →∞ b n c n < 1 and {k n } is sequence of real numbers with k n ≥ 1 for all n ≥ 1 and lim n →∞ k n 1, then t here exists a positive integer N 1 and γ ∈ 0, 1 such that c n k n <γfor all n ≥ N 1 . Proof. By lim sup n →∞ b n c n < 1, there exists a positive integer N 0 and δ ∈ 0, 1 such that c n ≤ b n c n <δ, ∀n ≥ N 0 . 3.1 Let δ ∈ 0, 1 with δ >δ. From lim n →∞ k n 1, then there exists a positive integer N 1 ≥ N 0 such that k n − 1 < 1 δ − 1, ∀n ≥ N 1 , 3.2 6 Fixed Point Theory and Applications from which we have k n < 1/δ , for all n ≥ N 1 .Putγ δ/δ , then we have c n k n <γfor all n ≥ N 1 . Lemma 3.2. Let X be a real Banach space and K a nonempty closed and convex subset of X.Let T : K → X be a nonselfasymptoticallynonexpansive mapping with the nonempty fixed-point set FT and a sequence {k n } of real numbers such that k n ≥ 1 and ∞ n1 k n − 1 < ∞.Let{a n }, {b n }, {c n }, {α n }, {β n }, and {γ n } be real sequences in 0, 1, such that {b n c n } and {α n β n γ n } in 0, 1 for all n ≥ 1.Let{x n } be a sequence in K defined by 1.12, then we have, for any q ∈ FT, lim n →∞ x n − q exists. Proof. Consider z n − q P a n T PT n−1 x n 1 − a n x n − Pq ≤ a n T PT n−1 x n 1 − a n x n − q ≤ a n T PT n−1 x n − q 1 − a n x n − q ≤ a n T PT n−1 x n − q 1 − a n x n − q ≤ a n k n x n − q 1 − a n x n − q 1 a n k n − a n x n − q 1 a n k n − 1 x n − q , y n − q P b n T PT n−1 z n c n T PT n−1 x n 1 − b n − c n x n − Pq ≤ b n T PT n−1 z n c n T PT n−1 x n 1 − b n − c n x n − q ≤ b n T PT n−1 z n − q c n T PT n−1 x n − q 1 − b n − c n x n − q ≤ b n k n z n − q c n k n x n − q 1 − b n − c n x n − q ≤ b n k n 1 a n k n − 1 x n − q c n k n 1 − b n − c n x n − q 1 k n − 1 b n c n a n b n k n x n − q , x n1 − q P α n T PT n−1 y n β n T PT n−1 z n γ n T PT n−1 x n 1 − α n − β n − γ n x n − Pq ≤ α n T PT n−1 y n − q β n T PT n−1 z n − q γ n T PT n−1 x n − q 1 − α n − β n − γ n x n − q ≤ α n k n y n − q β n k n z n − q γ n k n x n − q 1 − α n − β n − γ n x n − q ≤ α n k n 1 k n − 1 b n c n a n b n k n β n k n 1 a n k n − 1 γ n k n 1 − α n − β n − γ n x n − q ≤ 1 k n − 1 α n β n γ n k n − 1 k n α n b n k n α n c n k n − 1 α n k 2 n b n a n k n − 1 β n k n a n x n − q . 3.3 Fixed Point Theory and Applications 7 Thus, we have x n1 − q ≤ 1 k n − 1 α n β n γ n α n k n b n α n k n c n α n k 2 n b n a n β n k n a n x n − q . 3.4 Since ∞ n1 k n − 1 < ∞ and from Lemma 2.3, it f ollows that lim n →∞ x n − q exits. Lemma 3.3. Let X be a real uniformly convex Banach space and K a nonempty closed and convex subset of X.LetT : K → X be a nonselfasymptoticallynonexpansive mapping with the nonempty fixed-point set FT and a sequence {k n } of real numbers such that k n ≥ 1 and ∞ n0 k 2 n − 1 < ∞.Let {a n }, {b n }, {c n }, {α n }, {β n }, and {γ n } be real sequences in 0, 1, such that {b n c n } and {α n β n γ n } in 0, 1 for all n ≥ 1.Let{x n } be a sequence in K defined by 1.12, then one has the following conclusions. 1 If 0 < lim inf n α n ≤ lim sup n α n β n γ n < 1,thenlim n TPT n−1 y n − x n 0. 2 If either 0 < lim inf n β n ≤ lim sup n α n β n γ n < 1 or 0 < lim inf n α n and 0 ≤ lim sup n b n ≤ lim sup n b n c n < 1,thenlim n TPT n−1 z n − x n 0. 3 If the following conditions i 0 < lim inf n γ n ≤ lim sup n α n β n γ n < 1, ii either 0 < lim inf n α n and 0 ≤ lim sup n b n ≤ lim sup n b n c n < 1 or 0 < lim inf n β n ≤ lim sup n α n β n γ n < 1 and lim sup n a n < 1 are satisfied, then lim n TPT n−1 x n − x n 0. Proof. Let M sup{k n ,n ≥ 1}.ByLemma 3.2, we know that lim n →∞ x n − q exits for any q ∈ FT. Then the sequence {x n − q} is bounded. It follows that the sequences {y n − q} and {z n − q} are also bounded. Since T : K → X is a nonselfasymptoticallynonexpansive mapping, then the sequences {TPT n−1 x n − q}, {TPT n−1 y n − q},and{TPT n−1 z n − q} are also bounded. Therefore, there exists R>0 such that {x n − q}, {TPT n−1 x n − q}, {y n − q}, {TPT n−1 y n − q}, {z n − q}, {TPT n−1 z n − q}⊂B R .ByLemma 2.4 and 1.12, we have z n − q 2 P a n T PT n−1 x n 1 − a n x n − Pq 2 ≤ a n T PT n−1 x n 1 − a n x n − q 2 ≤ a n T PT n−1 x n − q 1 − a n x n − q 2 ≤ a n T PT n−1 x n − q 2 1 − a n x n − q 2 − a n g T PT n−1 x n − x n ≤ a n k 2 n x n − q 2 1 − a n x n − q 2 − a n g T PT n−1 x n − x n ≤ 1 a n k 2 n − a n x n − q 2 1 − a n x n − q 2 1 a n k 2 n − 1 x n − q 2 8 Fixed Point Theory and Applications y n − q 2 P b n T PT n−1 z n c n T PT n−1 x n 1 − b n − c n x n − Pq 2 ≤ b n T PT n−1 z n c n T PT n−1 x n 1 − b n − c n x n − q 2 ≤ b n T PT n−1 z n − q 2 c n T PT n−1 x n − q 2 1 − b n − c n x n − q 2 − 1 3 1 − b n − c n b n g T PT n−1 z n − x n c n g T PT n−1 x n − x n ≤ b n k 2 n z n − q 2 c n k 2 n x n − q 2 1 − b n − c n x n − q 2 − 1 3 b n 1 − b n − c n g T PT n−1 z n − x n ≤ b n k 2 n 1 a n k 2 n − 1 x n − q 2 c n k 2 n 1 − b n − c n x n − q 2 − 1 3 b n 1 − b n − c n g T PT n−1 z n − x n 1 k 2 n − 1 b n c n a n b n k 2 n x n − q 2 − 1 3 b n 1 − b n − c n g T PT n−1 z n − x n x n1 − q 2 P α n T PT n−1 y n β n T PT n−1 z n γ n T PT n−1 x n 1 − α n − β n − γ n x n − Pq ≤ α n T PT n−1 y n − q 2 β n T PT n−1 z n − q 2 γ n T PT n−1 x n − q 2 1 − α n − β n − γ n x n − q 2 − 1 3 1 − α n − β n − γ n α n g T PT n−1 y n − x n β n g T PT n−1 z n − x n γ n g T PT n−1 x n − x n ≤ α n k 2 n y n − q 2 β n k 2 n z n − q 2 γ n k 2 n x n − q 2 1 − α n − β n − γ n x n − q 2 − 1 3 1 − α n − β n − γ n α n g T PT n−1 y n − x n β n g T PT n−1 z n − x n γ n g T PT n−1 x n − x n ≤ α n k 2 n 1 k 2 n − 1 b n c n a n b n k 2 n x n − q 2 − 1 3 α n k 2 n b n 1 − b n − c n g T PT n−1 z n − x n β n k 2 n 1 a n k 2 n − 1 x n − q 2 γ n k 2 n x n − q 2 1 − α n − β n − γ n x n − q 2 − 1 3 1 − α n − β n − γ n α n g T PT n−1 y n − x n β n g T PT n−1 z n − x n γ n g T PT n−1 x n − x n ≤ α n k 2 n b n k 2 n β n k 4 n a n − β n k 2 n a n c n k 2 n 1 − b n − c n β n k 2 n 1 a n k 2 n − a n γ n k 2 n 1 − α n − β n − γ n x n − q 2 Fixed Point Theory and Applications 9 − 1 3 b n α n k 2 n 1 − b n − c n g T PT n−1 z n − x n − 1 3 1 − α n − β n − γ n α n g T PT n−1 y n − x n β n g T PT n−1 z n − x n γ n g T PT n−1 x n − x n x n − q 2 α n k 4 n b n α n k 6 n b n a n − α n k 4 n b n a n α n k 4 n c n α n k 2 n − α n k 2 n b n − α n k 2 n c n β n k 2 n β n k 4 n a n − β n k 2 n a n γ n k 2 n − α n − β n − γ n x n − q 2 − 1 3 b n α n k 2 n 1 − b n − c n g T PT n−1 z n − x n − 1 3 1 − α n − β n − γ n α n g T PT n−1 y n − x n β n g T PT n−1 z n − x n γ n g T PT n−1 x n − x n x n − q 2 α n k 2 n − 1 β n k 2 n − 1 γ n k 2 n − 1 α n k 2 n b n k 2 n − 1 α n a n b n k 4 n k 2 n − 1 β n k 2 n a n k 2 n − 1 α n k 2 n c n k 2 n − 1 x n − q 2 − 1 3 b n α n k 2 n 1 − b n − c n g T PT n−1 z n − x n − 1 3 1 − α n − β n − γ n α n g T PT n−1 y n − x n β n g T PT n−1 z n − x n γ n g T PT n−1 x n − x n x n − q 2 k 2 n − 1 α n β n γ n α n k 2 n b n α n a n b n k 4 n β n k 2 n a n α n k 2 n c n x n − q 2 − 1 3 b n α n k 2 n 1 − b n − c n g T PT n−1 z n − x n − 1 3 1 − α n − β n − γ n α n g T PT n−1 y n − x n β n g T PT n−1 z n − x n γ n g T PT n−1 x n − x n . x n − q 2 k 2 n − 1 α n β n γ n α n k 2 n b n α n a n b n k 4 n β n k 2 n a n α n k 2 n c n x n − q 2 − 1 3 b n α n k 2 n 1 − b n − c n g T PT n−1 z n − x n − 1 3 1 − α n − β n − γ n α n g T PT n−1 y n − x n β n g T PT n−1 z n − x n γ n g T PT n−1 x n − x n ≤ x n − q 2 k 2 n − 1 M 4 3M 2 3 R 2 10 Fixed Point Theory and Applications − 1 3 b n α n k 2 n 1 − b n − c n g T PT n−1 z n − x n − 1 3 1 − α n − β n − γ n α n g T PT n−1 y n − x n β n g T PT n−1 z n − x n γ n g T PT n−1 x n − x n , 3.5 Let κ n k 2 n − 1M 4 3M 2 3R 2 . Therefore, the assumption ∞ n1 k 2 n − 1 < ∞ implies that ∞ n1 κ n < ∞. Thus, we have x n1 − q 2 ≤ x n − q 2 κ n − 1 3 1 − b n − c n b n α n k 2 n g T PT n−1 z n − x n − 1 3 1 − α n − β n − γ n α n g T PT n−1 y n − x n β n g T PT n−1 z n − x n γ n g T PT n−1 x n − x n . 3.6 From the last inequality, we have α n 1 − α n − β n − γ n g T PT n−1 y n − x n ≤ 3 x n − q 2 − x n1 − q 2 κ n , 3.7 β n 1 − α n − β n − γ n g T PT n−1 z n − x n ≤ 3 x n − q 2 − x n1 − q 2 κ n , 3.8 γ n 1 − α n − β n − γ n g T PT n−1 x n − x n ≤ 3 x n − q 2 − x n1 − q 2 κ n , 3.9 1 − b n − c n b n α n k 2 n g T PT n−1 z n − x n ≤ 3 x n − q 2 − x n1 − q 2 κ n . 3.10 By condition 0 < lim inf n α n ≤ lim sup n α n β n γ n < 1, 3.11 there exists a positive integer n 0 and δ, δ ∈ 0, 1 such that 0 <δ<α n and α n β n γ n <δ < 1 for all n ≥ n 0 , then it follows from 3.7 that δ 1 − δ lim n →∞ α n 1 − α n − β n − γ n g T PT n−1 y n − x n ≤ 3 x n − q 2 − x n1 − q 2 κ n , 3.12 [...]... strongly to a fixed point of T Finally, we prove the weak convergenceof the iterative scheme 1.12 fornonselfasymptoticallynonexpansive mappings in a uniformly convex Banach space satisfying Opial’s condition Theorem 3.6 Let X be a real uniformly convex Banach space satisfying Opial’s condition and K a nonempty closed convex subset of X Let T : K → X be a nonselfasymptoticallynonexpansive mapping... Journal of Mathematical Analysis and Applications, vol 267, no 2, pp 444–453, 2002 6 W Nilsrakoo and S Saejung, “A new three-step fixed point iteration schemeforasymptoticallynonexpansive mappings,” Applied Mathematics and Computation, vol 181, no 2, pp 1026–1034, 2006 7 S Suantai, “Weak and strong convergence criteria of Noor iterationsforasymptoticallynonexpansive mappings,” Journal of Mathematical... “Strong and weak convergence theorems for common fixed point ofnonselfasymptoticallynonexpansive mappings,” Journal of Mathematical Analysis and Applications, vol 323, no 1, pp 550–557, 2006 Fixed Point Theory and Applications 15 12 C E Chidume, E U Ofoedu, and H Zegeye, “Strong and weak convergence theorems forasymptoticallynonexpansive mappings,” Journal of Mathematical Analysis and Applications,... Thus, {xn } converges weakly to an element of F T This completes the proof References 1 K Goebel and W A Kirk, “A fixed point theorem forasymptoticallynonexpansive mappings,” Proceedings of the American Mathematical Society, vol 35, pp 171–174, 1972 2 J Schu, “Weak and strong convergence to fixed points ofasymptoticallynonexpansive mappings,” Bulletin of the Australian Mathematical Society, vol... Applications, vol 280, no 2, pp 364–374, 2003 13 Z Opial, “Weak convergenceof the sequence of successive approximations fornonexpansive mappings,” Bulletin of the American Mathematical Society, vol 73, pp 591–597, 1967 14 K.-K Tan and H K Xu, “Approximating fixed points ofnonexpansive mappings by the Ishikawa iteration process,” Journal of Mathematical Analysis and Applications, vol 178, no 2, pp 301–308,... approximation schemes for general variational inequalities,” Journal of Mathematical Analysis and Applications, vol 251, no 1, pp 217–229, 2000 4 R Glowinski and P Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, vol 9 of SIAM Studies in Applied Mathematics, SIAM, Philadelphia, Pa, USA, 1989 5 B Xu and M A Noor, “Fixed-point iterationsforasymptotically nonexpansive. .. Proceedings of the American Mathematical Society, vol 4, pp 506–510, 1953 9 S Ishikawa, “Fixed points by a new iteration method,” Proceedings of the American Mathematical Society, vol 44, pp 147–150, 1974 10 S H Khan and N Hussain, Convergence theorems fornonselfasymptoticallynonexpansive mappings,” Computers & Mathematics with Applications, vol 55, no 11, pp 2544–2553, 2008 11 L Wang, “Strong and weak convergence. .. that lim xn − T xn n→∞ 0 3.26 In the next result, we prove our first strong convergence theorem as follows Theorem 3.5 Let X be a real uniformly convex Banach space and K a nonempty closed convex subset of X Let T : K → X be a nonselfasymptoticallynonexpansive mapping with the nonempty fixed2 point set F T and a sequence {kn } of real numbers such that kn ≥ 1 and ∞ 0 kn −1 < ∞ Let {an }, n {bn }, {cn... Banach space and K a nonempty closed convex subset of X Let T : K → X be a nonselfasymptoticallynonexpansive mapping with the nonempty fixed2 point set F T and a sequence {kn } of real numbers such that kn ≥ 1 and ∞ 0 kn −1 < ∞ Let {an }, n {bn }, {cn }, {αn }, {βn }, and {γn } be real sequences in 0, 1 , such that {bn cn } and {αn βn γn } in 0, 1 for all n ≥ 1 Let {xn } be a sequence in K defined by... such that cn kn < γ for all n ≥ N1 This together with 3.18 implies that for n ≥ N1 , 1−γ PT n−1 xn − xn < 1 − kn cn ≤ kn bn T P T T PT n−1 n−1 xn − xn zn − xn T PT n−1 3.20 yn − xn 12 Fixed Point Theory and Applications It follows from 3.15 and 3.16 that lim T P T n→∞ n−1 xn − xn 0 3.21 This completes the proof Next, we show that limn → ∞ xn − T xn 0 Lemma 3.4 Let X be a real uniformly convex Banach . 2010, Article ID 783178, 15 pages doi:10.1155/2010/783178 Research Article Convergence of Three-Step Iterations Scheme for Nonself Asymptotically Nonexpansive Mappings Seyit Temir Department of. 7 defined new three-step iterations which are extensions of Noor iterations and gave some weak and strong convergence theorems of the modified Noor iterations for asymptotically nonexpansive mappings. work is properly cited. Weak and strong convergence theorems of three-step iterations are established for nonself asymptotically nonexpansive mappings in uniformly convex Banach space. The results