Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 20 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
20
Dung lượng
550,48 KB
Nội dung
Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2010, Article ID 961502, 20 pages doi:10.1155/2010/961502 ResearchArticleCommutatorsofLittlewood-PaleyOperatorsontheGeneralizedMorrey Space Yanping Chen, 1 Yong Ding, 2 and Xinxia Wang 3 1 Department of Mathematics and Mechanics, Applied Science School, University of Science and Technology Beijing, Beijing 100083, China 2 Laboratory of Mathematics and Complex Systems (BNU), School of Mathematical Sciences, Beijing Normal University, Ministry of Education, Beijing 100875, China 3 The College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang 830046, China Correspondence should be addressed to Yanping Chen, yanpingch@126.com Received 6 May 2010; Accepted 11 July 2010 Academic Editor: Shusen Ding Copyright q 2010 Yanping Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let μ Ω , μ S ,andμ ∗, λ denote the Marcinkiewicz integral, the parameterized area integral, and the parameterized Littlewood-Paley g ∗ λ function, respectively. In this paper, the authors give a characterization of BMO space by the boundedness ofthecommutatorsof μ Ω , μ S ,andμ ∗, λ onthegeneralizedMorrey space L p,ϕ R n . 1. Introduction Let S n−1 {x ∈ R n : |x| 1} be the unit sphere in R n equipped with the Lebesgue measure dσ. Suppose that Ω satisfies the following conditions. aΩis the homogeneous function of degree zero on R n \{0},thatis, Ω μx Ω x , for any μ>0,x∈ R n \ { 0 } . 1.1 bΩhas mean zero on S n−1 ,thatis, S n−1 Ω x dσ x 0. 1.2 2 Journal of Inequalities and Applications cΩ∈ LipS n−1 ,thatis, Ω x − Ω y ≤ x − y , for any x ,y ∈ S n−1 . 1.3 In 1958, Stein 1 defined the Marcinkiewicz integral of higher dimension μ Ω as μ Ω f x ∞ 0 | F Ω,t x | 2 dt t 3 1/2 , 1.4 where F Ω,t x |x−y|≤t Ω x − y x − y n−1 f y dy. 1.5 We refer to see 1, 2 for the properties of μ Ω . Let 0 <<nand λ>1. The parameterized area integral μ S and the parameterized Littlewood-Paley g ∗ λ function μ ∗, λ are defined by μ S f x ⎛ ⎝ Γ x 1 t |y−z|<t Ω y − z y − z n− f z dz 2 dydt t n1 ⎞ ⎠ 1/2 , 1.6 where Γx{y,t ∈ R n1 : |x − y| <t}, and μ ∗, λ f x ⎛ ⎝ R n1 t t x − y λn 1 t |y−z|<t Ω y − z y − z n− f z dz 2 dydt t n1 ⎞ ⎠ 1/2 , 1.7 respectively. μ S and μ ∗, λ play very important roles in harmonic analysis and PDE e.g., see 3–8. Before stating our result, let us recall some definitions. For b ∈ L loc R n , the commutator b, μ Ω formed by b and the Marcinkiewicz integral μ Ω are defined by b, μ Ω f x ⎛ ⎝ ∞ 0 |x−y|≤t Ω x − y x − y n−1 b x − b y f y dy 2 dt t 3 ⎞ ⎠ 1/2 . 1.8 Journal of Inequalities and Applications 3 Let 0 <<nand λ>1. The commutator b, μ S of μ S and the commutator b, μ ∗, λ of μ ∗, λ are defined, respectively, by b, μ S f x ⎛ ⎝ Γ x 1 t |y−z|≤t Ω y − z y − z n− b x − b z f z dz 2 dydt t n1 ⎞ ⎠ 1/2 , 1.9 b, μ ∗, λ f x ⎛ ⎝ R n1 t t x − y λn × 1 t |y−z|≤t Ω y − z y − z n− b x − b z f z dz 2 dydt t n1 ⎞ ⎠ 1/2 . 1.10 Let b ∈ L loc R n .Itissaidthatb ∈ BMOR n if b ∗ : sup B⊂R n M b, B < ∞, 1.11 where B Bx, r denotes the ball in R n centered at x and with radius r, M b, B 1 | B | B | b x − b B | dx, 1.12 and b B 1/|B| B bydy. There are some results about the boundedness ofthecommutators formed by BMO functions with μ Ω , μ S ,andμ ∗, λ see 7, 9, 10. Many important operators gave a characterization of BMO space. In 1976, Coifman et al. 11 gave a characterization of BMO space by the commutator of Riesz transform; in 1982, Chanillo 12 studied the commutator formed by Riesz potential and BMO and gave another characterization of BMO space. The purpose of this paper is to give a characterization of BMO space by the boundedness ofthecommutatorsof μ Ω , μ S ,andμ ∗, λ onthegeneralizedMorrey space L p,ϕ R n . Definition 1.1. Let 1 <p<∞. Suppose that ϕ : 0, ∞ → 0, ∞ be such that ϕt is nonincreasing and t 1/p ϕt is nondecreasing. ThegeneralizedMorrey space L p,ϕ is defined by L p,ϕ R n f ∈ L loc R n : f L p,ϕ < ∞ , 1.13 where f L p,ϕ sup x∈R n r>0 1 ϕ | B x, r | 1 | B x, r | Bx,r f y p dy 1/p . 1.14 4 Journal of Inequalities and Applications We refer to see 13, 14 for the known results ofthegeneralizedMorrey space L p,ϕ for some suitable ϕ.Notingthatϕt ≡ t −1/p , we get the Lebesque space L p R n . For ϕt t λ/n−1/p 0 <λ<n, L p,ϕ R n coincides with theMorrey space L p,λ R n . The main result in this paper is as follows. Theorem 1.2. Assume that ϕt is nonincreasing and t 1/p ϕt is nondecreasing. Suppose that b, μ Ω is defined as 1.8, Ω satisfies 1.1, 1.2, and Ω x − Ω y ≤ C 1 log2/ x − y γ ,C 1 > 0,γ>1,x ,y ∈ S n−1 . 1.15 If b, μ Ω is bounded on L p,ϕ R n for some p 1 <p<∞,thenb ∈ BMOR n . Theorem 1.3. Let 0 <<nand 1 <p<∞. Assume that ϕt is nonincreasing and t 1/p ϕt is nondecreasing. Suppose that b, μ S is defined as 1.9, Ω satisfies 1.1, 1.2, and 1.15.Ifb, μ S is a bounded operator on L p,ϕ R n for some p 1 <p<∞,thenb ∈ BMOR n . Theorem 1.4. Let 0 <<n, λ>1, and 1 <p<∞. Assume that ϕt is nonincreasing and t 1/p ϕt is nondecreasing. Suppose that b, μ ∗,ϕ λ is defined as 1.10, Ω satisfies 1.1, 1.2, and 1.15.Ifb, μ ∗, λ is on L p,ϕ R n for some p 1 <p<∞,thenb ∈ BMOR n . Remark 1.5. It is easy to check that b, μ S fx ≤ 2 λn b, μ ∗, λ fxsee, e.g., the proof of 19 in 15, page 89, we therefore give only the proofs of Theorem 1.2 for b, μ Ω and Theorem 1.3 for b, μ S . Remark 1.6. It is easy to see that the condition 1.15 is weaker than Lip β S n−1 for 0 <β≤ 1. In the proof of Theorems 1.2 and 1.3, we will use some ideas in 16. However, because Marcinkiewicz integral and the parameterized Littlewood-Paleyoperators are neither the convolution operator nor the linear operators, hence, we need new ideas and nontrivial estimates in the proof. 2. Proof of Theorem 1.2 Let us begin with recalling some known conclusion. Similar to the proof of 17, we can easily get the following. Lemma 2.1. If Ω satisfies conditions 1.1, 1.2, and 1.15,letβ>0, then for |x| > 2|y|, we have Ω x − y x − y β − Ω x | x | β ≤ C | x | β log | x | / y γ . 2.1 Now let us return to the proof of Theorem 1.2. Suppose that b, μ Ω is a bounded operator on L p,ϕ R n , we are going to prove that b ∈ BMOR n . Journal of Inequalities and Applications 5 We may assume that b, μ Ω L p,ϕ →L p,ϕ 1. We want to prove that, for any x 0 ∈ R n and r ∈ R , the inequality N 1 | B x 0 ,r | Bx 0 ,r b y − a 0 dy ≤ A p, Ω,n,γ 2.2 holds, where a 0 |Bx 0 ,r| −1 Bx 0 ,r bydy. Since b − a 0 ,μ Ω b, μ Ω , we may assume that a 0 0. Let f y sgn b y − c 0 χ Bx 0 ,r y , 2.3 where c 0 1/|Bx 0 ,r| Bx 0 ,r sgnbydy. Since 1/|Bx 0 ,r| Bx 0 ,r bydy a 0 0, we can easily get |c 0 | < 1. Then, f has the following properties: f ∞ ≤ 2, 2.4 supp f ⊂ B x 0 ,r , 2.5 R n f y dy 0, 2.6 f y b y > 0,y∈ B x 0 ,r , 2.7 1 | B x 0 ,r | R n f y b y dy N. 2.8 In this proof for j 1, ,15, A j is a positive constant depending only on Ω,p, n, γ,and A i 1 ≤ i<j. Since Ω satisfies 1.2, then there exists an A 1 such that 0 <A 1 < 1and σ x ∈ S n−1 : Ω x ≥ 2C 1 log2/A 1 γ > 0, 2.9 where σ is the measure on S n−1 which is induced from the Lebesgue measure on R n .Bythe condition 1.15,itiseasytoseethat Λ : x ∈ S n−1 : Ω x ≥ 2C 1 log2/A 1 γ 2.10 is a closed set. We claim that if x ∈ Λ and y ∈ S n−1 , satisfying x − y ≤ A 1 , then Ω y ≥ C 1 log2/A 1 γ . 2.11 6 Journal of Inequalities and Applications In fact, since |Ωx − Ωy |≤C 1 /log2/|x − y | γ ≤ C 1 /log2/A 1 γ , note that Ωx ≥ 2C 1 /log2/A 1 γ , we can get Ωy ≥ C 1 /log2/A 1 γ . Taking A 2 > 3/A 1 ,let G x ∈ R n : | x − x 0 | ≥ A 2 r, x − x 0 ∈ Λ . 2.12 For x ∈ G, we have b, μ Ω f x ≥ μ Ω bf x − | b x | μ Ω f x ⎧ ⎪ ⎨ ⎪ ⎩ ∞ 0 |x−y|≤t Ω x − y x − y n−1 b y f y dy 2 dt t 3 ⎫ ⎪ ⎬ ⎪ ⎭ 1/2 − | b x | ⎧ ⎪ ⎨ ⎪ ⎩ ∞ 0 |x−y|≤t Ω x − y x − y n−1 f y dy 2 dt t 3 ⎫ ⎪ ⎬ ⎪ ⎭ 1/2 : I 1 − I 2 . 2.13 For I 1 , noting that if y ∈ Bx 0 ,r, then |x − x 0 | >A 2 |y − x 0 | for x ∈ G. Thus, we have x − y − x − x 0 ≤ 2 y − x 0 | x − x 0 | ≤ 2 A 2 <A 1 . 2.14 Using 2.11,wegetΩx − y ≥ C 1 /log2/A 1 γ . Noting that |x − x 0 ||x − y|, it follows from 2.5, 2.7, 2.8,andH ¨ older’s inequality that I 1 ≥ ⎧ ⎪ ⎨ ⎪ ⎩ ∞ | x−x 0 | ⎛ ⎜ ⎝ Bx 0 ,r Ω x − y b y f y x − y n−1 χ {|x−y|≤t} y dy ⎞ ⎟ ⎠ 2 dt t 3 ⎫ ⎪ ⎬ ⎪ ⎭ 1/2 ≥ ⎛ ⎜ ⎝ ∞ | x−x 0 | Bx 0 ,r Ω x − y b y f y x − y n−1 χ {|x−y|≤t} dy dt t 3 ⎞ ⎟ ⎠ ∞ | x−x 0 | dt t 3 −1/2 ≥ C 1 log2/A 1 γ | x − x 0 | Bx 0 ,r x − y −n1 b y f y |x−x 0 |≤t |x−y|≤t dt t 3 dy ≥ C log2/A 1 γ | x − x 0 | −n Bx 0 ,r b y f y dy A 3 Nr n | x − x 0 | −n . 2.15 Journal of Inequalities and Applications 7 For x ∈ G,byΩ ∈ L ∞ S n−1 , 2.4, 2.5, 2.6, the Minkowski inequality, and Lemma 2.1,we obtain I 2 | b x | ⎧ ⎨ ⎩ ∞ 0 R n f y Ω x − y x − y n−1 χ {|x−y|≤t} − Ω x − x 0 | x − x 0 | n−1 χ {|x−x 0 |≤t} dy 2 dt t 3 ⎫ ⎬ ⎭ 1/2 ≤ | b x | ⎧ ⎪ ⎨ ⎪ ⎩ ⎛ ⎝ ∞ 0 |x−y|≤t<|x−x 0 | Ω x − y x − y n−1 f y dy 2 dt t 3 ⎞ ⎠ 1/2 ⎛ ⎝ ∞ 0 |x−x 0 |≤t<|x−y| | Ω x − x 0 | | x − x 0 | n−1 f y dy 2 dt t 3 ⎞ ⎠ 1/2 ⎛ ⎜ ⎝ ∞ 0 ⎛ ⎝ |x−x 0 |≤t |x−y|≤t Ω x − y x − y n−1 − Ω x − x 0 | x − x 0 | n−1 f y dy ⎞ ⎠ 2 dt t 3 ⎞ ⎟ ⎠ 1/2 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ ≤ | b x | ⎧ ⎨ ⎩ Bx 0 ,r Ω x − y x − y n−1 f y |x−y|≤t<|x−x 0 | dt t 3 1/2 dy Bx 0 ,r | Ω x − x 0 | | x − x 0 | n−1 f y |x−y|>t≥|x−x 0 | dt t 3 1/2 dy Bx 0 ,r f y Ω x − y x − y n−1 − Ω x − x 0 | x − x 0 | n−1 ⎛ ⎝ |x−y|≤t |x−x 0 |≤t dt t 3 ⎞ ⎠ 1/2 dy ⎫ ⎪ ⎬ ⎪ ⎭ ≤ C | b x | r 1/2 Bx 0 ,r f y | x − x 0 | n1/2 dy Bx 0 ,r f y | x − x 0 | n log | x − x 0 | /r γ dy ≤ A 4 | b x | r n | x − x 0 | −n log | x − x 0 | r −γ . 2.16 Let F x ∈ G : | b x | > A 3 N 2A 4 log | x − x 0 | r γ , | x − x 0 | <N 1/n r . 2.17 Without loss of generality, we may assume that N>A 2 > 1, otherwise, we get the desired 8 Journal of Inequalities and Applications result. Since ϕt is nonincreasing, it follows that ϕ|Bx 0 ,N 1/n r| ≤ ϕ|Bx 0 ,r|ϕr n .By 2.13, 2.15,and2.16, we have f p L p,ϕ ≥ b, μ Ω f p L p,ϕ ≥ 1 ϕ B x 0 ,N 1/n r p B x 0 ,N 1/n r |x−x 0 |<N 1/n r b, μ Ω f x p dx ≥ 1 ϕ r n p Nr n G\F∩{|x−x 0 |<N 1/n r} 1 2 A 3 Nr n | x − x 0 | −n p dx ≥ 1 ϕ r n p Nr n {A 5 |F|A 2 r n 1/n <|x−x 0 |<N 1/n r}∩G 1 2 A 3 Nr n | x − x 0 | −n p dx ω n−1 ϕ r n p Nr n A 3 Nr n 2 p N 1/n r A 5 | F | A 2 r n 1/n t −pnn−1 dt ≥ ω n−1 ϕ r n p Nr n p−1 A 3 /2 p n − np N 1−p r n1−p − A 1−pn 5 | F | A 2 r n 1−p . 2.18 Thus, | F | A 2 r n 1−p ≤ A 6 N 1−p r n1−p 1 ϕ r n p f p L p,ϕ . 2.19 Now, we claim that f L p,ϕ ≤ C ϕ r n , 2.20 where C is independent of r. In fact, f L p,ϕ sup x∈R n t>0 1 ϕ | B x, t | 1 | B x, t | Bx,t f y p dy 1/p . 2.21 Now, we consider the L p,ϕ norm of f in the following two cases. Case 1 t>r. Since s 1/p ϕs is nondecreasing in s, then 1 ϕ | B x, t | 1 | B x, t | 1/p ≤ 1 ϕ r n 1 r n/p . 2.22 Journal of Inequalities and Applications 9 Thus, f L p,ϕ ≤ sup x∈R n t>0 1 ϕ r n 1 r n/p Bx,t f y p dy 1/p sup x∈R n t>0 1 ϕ r n 1 r n/p Bx,t∩Bx 0 ,r f y p dy 1/p ≤ C ϕ r n . 2.23 Case 2 t ≤ r. Since ϕs is nonincreasing in s, then 1 ϕ | B x, t | ≤ 1 ϕ r n . 2.24 Thus, f L p,ϕ ≤ sup x∈R n t>0 1 ϕ r n 1 | B x, t | Bx,t f y p dy 1/p ≤ C ϕ r n . 2.25 Now, 2.20 is established. Then, by 2.19 and 2.20,weget | F | A 2 r n ≥ A 7 Nr n . 2.26 If N ≤ 2A −1 7 A n 2 , then Theorem 1.2 is proved. If N>2A −1 7 A n 2 , then | F | ≥ A 7 2 Nr n . 2.27 Let gyχ Bx 0 ,r y. For x ∈ F, we have b, μ Ω g x ≥ | b x | ⎧ ⎪ ⎨ ⎪ ⎩ ∞ 0 |x−y|≤t Ω x − y x − y n−1 g y dy 2 dt t 3 ⎫ ⎪ ⎬ ⎪ ⎭ 1/2 − ⎧ ⎪ ⎨ ⎪ ⎩ ∞ 0 |x−y|≤t Ω x − y x − y n−1 b y g y dy 2 dt t 3 ⎫ ⎪ ⎬ ⎪ ⎭ 1/2 : K 1 − K 2 . 2.28 10 Journal of Inequalities and Applications Noting that if y ∈ Bx 0 ,r and x ∈ F,weget|x − y − x − x 0 |≤A 1 . Applying 2.11,we have Ωx − y ≥ C 1 /log2/A 1 γ . Since |x − y||x − x 0 | when y ∈ Bx 0 ,r and x ∈ F,it follows that K 1 ≥ | b x | ⎧ ⎪ ⎨ ⎪ ⎩ ∞ | x−x 0 | ⎛ ⎜ ⎝ Bx 0 ,r Ω x − y x − y n−1 χ {|x−y|≤t} y dy ⎞ ⎟ ⎠ 2 dt t 3 ⎫ ⎪ ⎬ ⎪ ⎭ 1/2 ≥ | b x | ⎛ ⎜ ⎝ ∞ | x−x 0 | Bx 0 ,r Ω x − y x − y n−1 χ {|x−y|≤t} dy dt t 3 ⎞ ⎟ ⎠ ∞ | x−x 0 | dt t 3 −1/2 ≥ C 1 | b x | log2/A 1 γ | x − x 0 | Bx 0 ,r x − y −n1 |x−x 0 |≤t |x−y|≤t dt t 3 dy ≥ A 8 | b x || x − x 0 | −n Bx 0 ,r dy A 8 r n | b x || x − x 0 | −n . 2.29 By Ω ∈ L ∞ S n−1 , |x− x 0 ||x −y| when y ∈ Bx 0 ,r and x ∈ F and the Minkowski inequality, we have K 2 ≤ C Bx 0 ,r b y x − y n dy ≤ A 9 | x − x 0 | −n Bx 0 ,r b y dy A 9 Nr n | x − x 0 | −n . 2.30 Thus, by 2.28, 2.29,and2.30,weget,forx ∈ F, b, μ Ω g x ≥ A 8 r n | b x || x − x 0 | −n − A 9 Nr n | x − x 0 | −n . 2.31 Similar to the proof of 2.20, we can easily get g L p,ϕ ≤ C/ϕr n .Thus,by2.31, [...]... 13 T Mizuhara, Commutatorsof singular integral operatorsonMorrey spaces with general growth functions,” Surikaisekikenkyusho K¯ kyuroku, no 1102, pp 49–63, 1999, Proceedings ofthe Coference on o ¯ ¯ ¯ Harmonic Analysis and Nonlinear Partial Differential Equations, Kyoto, Japan, 1998 14 Y Komori and T Mizuhara, “Factorization of functions in H 1 Rn and generalizedMorrey spaces,” Mathematische Nachrichten,... “A note onthe Marcinkiewicz integral,” Colloquium Mathematicum, vol 60-61, no 1, pp 235–243, 1990 8 E M Stein, The development of square functions in the work of A Zygmund,” Bulletin ofthe American Mathematical Society, vol 7, no 2, pp 359–376, 1982 9 Y Ding, S Lu, and K Yabuta, Oncommutatorsof Marcinkiewicz integrals with rough kernel,” Journal of Mathematical Analysis and Applications, vol... authors wish to express their gratitude to the referee for his/her valuable comments and suggestions Theresearch was supported by NSF of China Grant nos.: 10901017, 10931001 , SRFDP of China Grant no.: 20090003110018 , and NSF of Zhenjiang Grant no.: Y7080325 References 1 E M Stein, Onthe functions of Littlewood-Paley, Lusin, and Marcinkiewicz,” Transactions ofthe American Mathematical Society, vol... be as 2.3 , then 2.4 – 2.8 hold In this proof for j 1, , 13, Bj is a positive constant depending only on Ω, p, n, , and Bi 1 ≤ i < j Since Ω satisfies 1.2 , then there exists a B1 such that 0 < B1 < 1 and σ x ∈ Sn−1 : Ω x ≥ 2C1 log 2/B1 γ > 0, 3.2 Journal of Inequalities and Applications 13 where σ is the measure on Sn−1 which is induced from the Lebesgue measure on Rn By the condition 1.15 , it... 2006 20 Journal of Inequalities and Applications 15 E M Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, no 30, Princeton University Press, Princeton, NJ, USA, 1970 16 A Uchiyama, Onthe compactness ofoperatorsof Hankel type,” Tˆ hoku Mathematical Journal, vol o 30, no 1, pp 163–171, 1978 17 Y Ding, “A note on end properties of Marcinkiewicz... Q Xue, “Endpoint estimates for commutatorsof a class ofLittlewood-Paley operators, ” Hokkaido Mathematical Journal, vol 36, no 2, pp 245–282, 2007 11 R Coifman, R Rochberg, and G Weiss, “Factorization theorems for Hardy spaces in several variables,” The Annals of Mathematics, vol 103, no 3, pp 611–635, 1976 12 S Chanillo, “A note on commutators, ” Indiana University Mathematics Journal, vol 31, no 1,... get A10 ≥ A15 log N − A12 log N Then, N ≤ A Ω, p, n, γ Theorem 1.2 is proved 3 Proof of Theorem 1.3 Similar to the proof of Theorem 1.2, we only give the outline Suppose that b, μS is a bounded operator on Lp,ϕ Rn , we are going to prove that b ∈ BMO Rn We may assume that b, μS Lp,ϕ →Lp,ϕ 1 We want to prove that, for any x0 ∈ Rn and r ∈ R , the inequality 1 |B x0 , r | N b y − a0 dy ≤ B Ω, p, n,... Value Problems, vol 83 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Washington, DC, USA, 1994 5 Q Xue and Y Ding, “Weighted Lp boundedness for parametrized Littlewood-Paley operators, ” Taiwanese Journal of Mathematics, vol 11, no 4, pp 1143–1165, 2007 6 M Sakamoto and K Yabuta, “Boundedness of Marcinkiewicz functions,” Studia Mathematica, vol 135, no 2, pp 103–142,... F and the Lp,ϕ 1 B11 ϕ rn γ 3.20 γ 3.21 B9 Nr n ϕ r n Nr n |x − x0 |−n dx |x − x0 |−n dx F Journal of Inequalities and Applications 19 As the proof of 2.33 and 2.36 , we can get that there exists a constant τ > 1 such that L1 ≥ B12 ϕ rn τ log N , B13 L2 ≤ log N ϕ rn 3.22 So, by 3.21 and 3.22 , we get B10 ≥ B12 log N Then, N ≤ B Ω, p, n, τ − B13 log N 3.23 Theorem 1.3 is proved Acknowledgments The authors... class of rough Marcinkiewicz integrals,” Indiana University Mathematics Journal, vol 48, no 3, pp 1037–1055, 1999 3 S.-Y A Chang, J M Wilson, and T H Wolff, “Some weighted norm inequalities concerning the Schrodinger operators, ” Commentarii Mathematici Helvetici, vol 60, no 2, pp 217–246, 1985 ¨ 4 C E Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, vol 83 of CBMS . Corporation Journal of Inequalities and Applications Volume 2010, Article ID 961502, 20 pages doi:10.1155/2010/961502 Research Article Commutators of Littlewood-Paley Operators on the Generalized Morrey. nor the linear operators, hence, we need new ideas and nontrivial estimates in the proof. 2. Proof of Theorem 1.2 Let us begin with recalling some known conclusion. Similar to the proof of 17,. paper is to give a characterization of BMO space by the boundedness of the commutators of μ Ω , μ S ,andμ ∗, λ on the generalized Morrey space L p,ϕ R n . Definition 1.1. Let 1 <p<∞. Suppose