Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 14 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
14
Dung lượng
512,88 KB
Nội dung
HindawiPublishingCorporationAdvancesinDifferenceEquationsVolume2010,ArticleID573281,14 pages doi:10.1155/2010/573281 Research Article On the Global Character of the System of Piecewise Linear Difference Equations x n1 |x n |−y n − 1 and y n1 x n −|y n | Wirot Tikjha, 1, 2 Yongwimon L e n b u ry, 1, 2 and Evelina Giusti Lapierre 3 1 Department of Mathematics, Faculty of Science, Mahidol University, Rama 6 Road Bangkok, 10400, Thailand 2 Center of Excellence in Mathematics, PERDO Commission on Higher Education, Si A yudhya Road, Bangkok 10400, Thailand 3 John Hazen White School of Arts and Sciences, Department of Mathematics, Johnson and Wales University, 8 Abbott Park Place, Providence, RI 02903, USA Correspondence should be addressed to Yongwimon Lenbury, scylb@mahidol.ac.th Received 23 June 2010; Revised 4 September 2010; Accepted 2 December 2010 Academic Editor: Donal O’Regan Copyright q 2010 Wirot T ikjha et a l. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider the system in the title where the initial condition x 0 ,y 0 ∈ R 2 . We show that the system has exactly two prime period-5 solutions and a unique equilibrium point 0, −1.Wealso show that every solution of the system is eventually one of the two prime period-5 solutions or else the unique equilibrium point. 1. Introduction In this paper, we consider the system of piecewise linear differenceequations x n1 | x n | − y n − 1, y n1 x n − y n , n 0, 1, 2, , 1.1 where the initial condition x 0 ,y 0 ∈ R 2 . We show that every solution of System 1.1 is even- tually either one of two prime period-5 solutions or else the unique equilibrium point 0, −1. 2AdvancesinDifference Equations System 1.1 was motivated by Devaney’s Gingerbread man map 1, 2 x n1 | x n | − x n−1 1 1.2 or its equivalent system of piecewise linear differenceequations 3, 4 x n1 | x n | − y n 1, y n1 x n , n 0, 1, 2, 1.3 We believe that the methods and techniques used in this paper will be useful in discovering the global character of solutions of similar systems, including the Gingerbread man map. 2. The Global Behavior of the Solutions of System 1.1 System 1.1 has the equilibrium point x, y ∈ R 2 given by x, y 0, −1 . 2.1 System 1.1 has two prime period-5 solutions, P 1 5 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ x 0 0,y 0 1 x 1 −2,y 1 −1 x 2 2,y 2 −3 x 3 4,y 3 −1 x 4 4,y 4 3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , P 2 5 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ x 0 0,y 0 1 7 x 1 − 8 7 ,y 1 − 1 7 x 2 2 7 ,y 2 − 9 7 x 3 4 7 ,y 3 −1 x 4 4 7 ,y 4 − 3 7 . ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ . 2.2 AdvancesinDifferenceEquations 3 Set l 1 x, y : x ≥ 0,y 0 , l 2 x, y : x 0,y≥ 0 , l 3 x, y : x<0,y 0 , l 4 x, y : x 0,y<0 , Q 1 x, y : x>0,y>0 , Q 2 x, y : x<0,y>0 , Q 3 x, y : x<0,y<0 , Q 4 x, y : x>0,y<0 . 2.3 Theorem 2.1. Let x 0 ,y 0 ∈ R 2 . Then there exists an integer N≥0 such that the solution {x n ,y n } ∞ nN is eventually either the prime period-5 solution P 1 5 , the prime period-5 solution P 2 5 ,or else the unique equilibrium point 0, −1. The proof is a direct consequence of the following lemmas. Lemma 2.2. Suppose there exists an integer M ≥ 0 such that −1 ≤ x M ≤ 0 and y M −x M −1.Then x M1 ,y M1 0, −1,andso{x n ,y n } ∞ nM1 is the equilibrium solution. Proof. Note that x M1 | x M | − y M − 1 −x M − −x M − 1 − 1 0, y M1 x M − y M x M − x M 1 −1, 2.4 and so the proof is complete. Lemma 2.3. Suppose there exists an integer M ≥ 0 such that x M ≥ 1 and y M x M − 1.Then x M1 ,y M1 0, 1,andso{x n ,y n } ∞ nM1 is P 1 5 . Proof. We have x M1 | x M | − y M − 1 x M − x M − 1 − 1 0, y M1 x M − y M x M − x M − 1 1, 2.5 and so the proof is complete. Lemma 2.4. Suppose there exists an integer M ≥ 0 such that x M 0 and y M ≥ 0. Then the following statements are true. 1 x M5 0. 2 If y M > 1/4,then{x n ,y n } ∞ nM5 is P 1 5 . 3 If 0 ≤ y M ≤ 1/4,theny M5 8y M − 1. 4AdvancesinDifference Equations Proof. We have x M 0andy M ≥ 0. Then x M1 | x M | − y M − 1 −y M − 1 < 0, y M1 x M − y M −y M ≤ 0, x M2 | x M1 | − y M1 − 1 2y M ≥ 0, y M2 x M1 − y M1 −2y M − 1 < 0, x M3 | x M2 | − y M2 − 1 4y M ≥ 0, y M3 x M2 − y M2 −1, x M4 | x M3 | − y M3 − 1 4y M ≥ 0, y M4 x M3 − y M3 4y M − 1, x M5 | x M4 | − y M4 − 1 0, 2.6 and so statement 1 is true. If y M > 1/4, then y M5 x M4 −|y M4 | 1. That is, x M5 ,y M5 0, 1 and so statement 2 is true. If 0 ≤ y M ≤ 1/4, then y M5 x M4 −|y M4 | 8y M − 1, and so statement 3 is true. Lemma 2.5. Suppose there exists an integer M ≥ 0 such that x M 0 and y M < −1. Then the following statements are true. 1 x M4 0. 2 If −3/2 <y M < −1,theny M4 −4y M − 5. 3 If y M ≤−3/2,then{x n ,y n } ∞ nM4 is P 1 5 . Proof. We have x M 0andy M < −1. Then x M1 | x M | − y M − 1 −y M − 1 > 0, y M1 x M − y M y M < 0, x M2 | x M1 | − y M1 − 1 −2y M − 2 > 0, y M2 x M1 − y M1 −1, x M3 | x M2 | − y M2 − 1 −2y M − 2 > 0, y M3 x M2 − y M2 −2y M − 3, x M4 | x M3 | − y M3 − 1 0, 2.7 and so statement 1 is true. Now if −3/2 <y M < −1, then y M3 −2y M − 3 < 0. Thus y M4 x M3 −|y M3 | −4y M − 5, and so statement 2 is true. Lastly, if y M ≤−3/2, then y M3 −2y M − 3 ≥ 0. Thus y M4 x M3 −|y M3 | 1; that is, x M4 ,y M4 0, 1 and so statement 3 is true. AdvancesinDifferenceEquations 5 Lemma 2.6. Suppose there exists an integer M ≥ 0 such that x M ≥ 0 and y M 0. Then the following statements are true. 1 If x M ≥ 1,then{x n ,y n } ∞ nM2 is P 1 5 . 2 If 1/4 <x M < 1,then{x n ,y n } ∞ nM6 is P 1 5 . 3 If 0 ≤ x M ≤ 1/4,thenx M6 0 and y M6 8x M − 1. Proof. First consider the case x M ≥ 1andy M 0. Then x M1 | x M | − y M − 1 x M − 1 ≥ 0, y M1 x M − y M x M > 0, x M2 | x M1 | − y M1 − 1 −2, y M2 x M1 − y M1 −1, 2.8 and so statement 1 is true. Next consider the case 0 ≤ x M < 1andy M 0. Then x M1 | x M | − y M − 1 x M − 1 < 0, y M1 x M − y M x M ≥ 0, x M2 | x M1 | − y M1 − 1 −2x M ≤ 0, y M2 x M1 − y M1 −1, x M3 | x M2 | − y M2 − 1 2x M ≥ 0, y M3 x M2 − y M2 −2x M − 1 < 0, x M4 | x M3 | − y M3 − 1 4x M ≥ 0, y M4 x M3 − y M3 −1, x M5 | x M4 | − y M4 − 1 4x M ≥ 0, y M5 x M4 − y M4 4x M − 1, x M6 | x M5 | − y M5 − 1 0. 2.9 If 1/4 <x M < 1, then y M5 4x M − 1 > 0andsoy M6 x M5 −|y M5 | 1. That is, x M6 ,y M6 0, 1 and so statement 2 is true. If 0 ≤ x M ≤ 1/4, then y M5 4x M − 1 ≤ 0. Thus y M6 x M5 −|y M5 | 8x M − 1, and so statement 3 is true. Lemma 2.7. Suppose there exists an integer M ≥ 0 such that x M < −1 and y M 0. Then the following statements are true. 1 x M4 0. 2 If −3/2 ≤ x M < −1,theny M4 −4x M − 5. 3 If x M < −3/2,then{x n ,y n } ∞ nM4 is P 1 5 . 6AdvancesinDifference Equations Proof. Let x M < −1andy M 0. Then x M1 | x M | − y M − 1 −x M − 1 > 0, y M1 x M − y M x M < 0, x M2 | x M1 | − y M1 − 1 −2x M − 2 > 0, y M2 x M1 − y M1 −1, x M3 | x M2 | − y M2 − 1 −2x M − 2 > 0, y M3 x M2 − y M2 −2x M − 3, x M4 | x M3 | − y M3 − 1 0, 2.10 and so statement 1 is true. If −3/2 ≤ x M < −1, then y M3 −2x M − 3 ≤ 0. Thus y M4 x M3 −|y M3 | −4x M − 5, and so statement 2 is true. If x M < −3/2, then y M3 −2x M − 3 > 0andy M4 x M3 −|y M3 | 1. That is, x M4 ,y M4 0, 1 and so {x n ,y n } ∞ nM4 is P 1 5 and the proof is complete. We now give the proof of Theorem 2.1 when x M ,y M is in l 2 {x, y : x 0,y ≥ 0}. Lemma 2.8. Suppose there exists an integer M ≥ 0 such that x M ,y M ∈ l 2 . Then the following statements are true. 1 If 0 ≤ y M < 1/7,then{x n ,y n } ∞ nM is eventually the equilibrium solution. 2 If y M 1/7, then the solution {x n ,y n } ∞ nM2 is P 2 5 . 3 If y M > 1/7, then the solution {x n ,y n } ∞ nM is eventually P 1 5 . Proof. 1 We will first show that statement 1 is true. Suppose 0 ≤ y M < 1/7; for each n ≥ 0, let a n 2 3n − 1 7 · 2 3n . 2.11 Observe that 0 a 0 <a 1 <a 2 < ···< 1 7 , lim n →∞ a n 1 7 . 2.12 Thus there exists a unique integer K ≥ 0suchthaty M ∈ a K ,a K1 . We first consider the case K 0; that is, y M ∈ 0, 1/8. By statements 1 and 3 of Lemma 2.4, x M5 0andy M5 8y M − 1. Clearly y M5 < 0, and so x M6 | x M5 | − y M5 − 1 −8y M ≤ 0, y M6 x M5 − y M5 8y M − 1. 2.13 AdvancesinDifferenceEquations 7 Now −1 <x M6 ≤ 0andy M6 −x M6 − 1, and so by Lemma 2.2, {x n ,y n } ∞ nM7 is the equilibrium solution. Without loss of generality, we may assume K ≥ 1. For each integer n such that n ≥ 0, let Pn be the following statement: x M5n5 0, y M5n5 2 3n1 y M − 2 3n1 − 1 7 ≥ 0. 2.14 Claim 1. Pn is true for 0 ≤ n ≤ K − 1. The proof Claim 1 will be by induction on n. We will first show that P0 is true. Recall that x M 0andy M ∈ a K ,a K1 ⊂ 1/8, 1/7. Then by statements 1 and 3 of Lemma 2.4,wehavex M505 0andy M505 8y M − 1. Note that, y M505 8y M − 1 2 301 y M − 2 301 − 1 7 ≥ 0 2.15 and so P0 is true. Thus if K 1, then we have shown that for 0 ≤ n ≤ K − 1, Pn is true. It remains to consider the case K ≥ 2. So assume that K ≥ 2. Let n be an integer such that 0 ≤ n ≤ K − 2 and suppose Pn is true. We will show that Pn 1 is true. Since Pn is true, we know x M5n5 0,y M5n5 2 3n1 y M − 2 3n1 − 1 7 ≥ 0. 2.16 It is easy to verify that for y M ∈ 1/8, 1/7, y M5n5 2 3n1 y M − 2 3n1 − 1 7 < 1 4 . 2.17 Thus by statements 1 and 3 of Lemma 2.4, x M5n15 0, y M5n15 8 y M5n5 − 1 2 3 2 3n1 y M − 2 3n1 − 1 7 − 1 2 3n6 y M − 2 3n6 7 2 3 7 − 1 2 3n2 y M − 2 3n2 − 1 7 . 2.18 8AdvancesinDifference Equations Recall that y M ∈ a K ,a K1 2 3K − 1/7 · 2 3K , 2 3K1 − 1/7 · 2 3K1 . In particular, y M5n15 2 3n2 y M − 2 3n2 − 1 7 ≥ 2 3n2 2 3K − 1 7 · 2 3K − 2 3n2 − 1 7 2 3n3K6 7 · 2 3K − 2 3n6 7 · 2 3K − 2 3n6 7 1 7 1 7 1 − 2 3n−K−2 ≥ 1 7 1 − 1 0, 2.19 and so Pn 1 is true. Thus the proof of the claim is complete. That is, Pn is true for 0 ≤ n ≤ K − 1. Specifically, PK − 1 is true, and so x M5K−15 0,y M5K−15 2 3K y M − 2 3K − 1 7 ≥ 0. 2.20 In particular, 2 3K 2 3K − 1 7 · 2 3K − 2 3K − 1 7 ≤ y M5K−15 < 2 3K 2 3K3 − 1 7 · 2 3K3 − 2 3K − 1 7 . 2.21 That is, 0 ≤ y M5K−15 < 1/8, and so by case K 0, {x n ,y n } ∞ nM5K7 is the equilibrium solution, and the proof of statement 1 is complete. 2 We will next show that statement 2 is true. Suppose x M ,y M 0, 1/7 .Note that 0, 1/7 ∈ P 2 5 . Thus the solution {x n ,y n } ∞ nM is P 2 5 . 3 Finally, we will show that statement 3 is true. Suppose y M > 1/7. First consider y M > 1/4. By statement 2 of Lemma 2.4,thesolution{x n ,y n } ∞ nM5 is P 1 5 . Next consider the case y M ∈ 1/7, 1/4.Foreachn ≥ 1, let b n 2 3n−1 3 7 · 2 3n−1 . 2.22 Observe that 1 4 b 1 >b 2 >b 3 > ···> 1 7 , lim n →∞ b n 1 7 . 2.23 Thus there exists a unique integer K ≥ 1suchthaty M ∈ b K1 ,b K . AdvancesinDifferenceEquations 9 Note that the statement Pn which we stated and proved in the proof of statement 1 of this lemma still holds. Specifically PK − 1 is true, and so x M5K−15 0,y M5K−15 2 3K y M − 2 3K − 1 7 ≥ 0. 2.24 Recall that for y M ∈ b K1 ,b K . In particular, y M5K 2 3K y M − 2 3K − 1 7 > 2 3K 2 3K2 3 7 · 2 3K2 − 2 3K − 1 7 1 4 . 2.25 By statement 2 of Lemma 2.4,thesolution{x n ,y n } ∞ nM5K5 is P 1 5 . We now give the proof of Theorem 2.1 when x M ,y M is in l 4 {x, y : x 0,y <0}. Lemma 2.9. Suppose there exists an integer M ≥ 0 such that x M ,y M ∈ l 4 . Then the following statements are true. 1 If −9/7 <y M < 0,then{x n ,y n } ∞ nM is eventually the equilibrium solution. 2 If y M −9/7, then the solution {x n ,y n } ∞ nM1 is P 2 5 . 3 If y M < −9/7, then the solution {x n ,y n } ∞ nM is eventually P 1 5 . Proof. 1 We will first show that statement 1 is true. So suppose −9/7 <y M < 0. Case 1. Suppose −1 ≤ y M < 0. Then x M1 | x M | − y M − 1 −y M − 1 ≤ 0, y M1 x M − y M y M . 2.26 In particular, −1 <x M1 ≤ 0andy M1 −x M1 − 1, and so by Lemma 2.2, {x n ,y n } ∞ nM2 is the equilibrium solution. Case 2. Suppose −5/4 ≤ y M < −1. By statements 1 and 2 of Lemma 2.5, x M4 0and y M4 −4y M − 5. Then x M5 | x M4 | − y M4 − 1 4y M 4 < 0, y M5 x M4 − y M4 −4y M − 5. 2.27 Thus −1 ≤ x M5 < 0andy M5 −x M5 − 1, and so by Lemma 2.2, {x n ,y n } ∞ nM6 is the equilibrium solution. Case 3. Suppose −9/7 <y M < −5/4. By statements 1 and 2 of Lemma 2.5, x M4 0 and y M4 −4y M − 5. Note that 0 <y M4 < 1/7 and so by statement 1 of Lemma 2.8, {x n ,y n } ∞ nM4 is eventually equilibrium solution. 10 AdvancesinDifferenceEquations 2 We will next show that statement 2 is true. Suppose y M −9/7. By direct calcu- lations we have x M1 ,y M1 2/7, −9/7.Sothesolution{x n ,y n } ∞ nM1 is P 2 5 . 3 Finally, we will show that statement 3 is true. Suppose x M 0andy M < −9/7. Case 1. Suppose −3/2 <y M < −9/7. By statements 1 and 2 of Lemma 2.5,wehavex M4 0andy M4 −4y M − 5. Note that 1/7 <y M4 < 1 and so by statement 3 of Lemma 2.8,the solution {x n ,y n } ∞ nM4 is eventually P 1 5 . Case 2. Suppose y M ≤−3/2. By statement 3 of Lemma 2.5,thesolution{x n ,y n } ∞ nM4 is P 1 5 . We now give the proof of Theorem 2.1 when x M ,y M is in l 1 {x, y : x ≥ 0,y 0}. Lemma 2.10. Suppose there exists an integer M ≥ 0 such that x M ,y M ∈ l 1 . Then the following statements are true. 1 If 0 ≤ x M < 1/7,then{x n ,y n } ∞ nM is eventually the equilibrium solution. 2 If x M 1/7, then the solution {x n ,y n } ∞ nM3 is P 2 5 . 3 If x M > 1/7, then the solution {x n ,y n } ∞ nM is eventually P 1 5 . Proof. 1 We will first show that statement 1 is true. So suppose 0 ≤ x M < 1/7andy M 0. By statement 3 of Lemma 2.6, x M6 0andy M6 8x M − 1. In particular, −1 <y M6 < 1/7 and so by statement 1 of Lemma 2.8 and statement 1 of Lemma 2.9, {x n ,y n } ∞ nM6 is eventually the equilibrium solution. 2 We will next show that statement 2 is true. Suppose x M 1/7. By direct calculations we have x M3 ,y M3 2/7, −9/7. Thus the solution {x n ,y n } ∞ nM3 is P 2 5 . 3 Finally, we will show statement 3 is true. First consider the case 1/7 <x M ≤ 1/4. By statement 3 of Lemma 2.6, x M6 0and y M6 8x M − 1. Now, 1/7 <y M6 ≤ 1 and so by statement 3 of Lemma 2.8,thesolution {x n ,y n } ∞ nM6 is eventually P 1 5 . Next consider the case x M > 1/4. Then by statements 1 and 2 of Lemma 2.6,if x M ≥ 1then{x n ,y n } ∞ nM2 is P 1 5 ,andif1/4 <x M < 1then{x n ,y n } ∞ nM6 is P 1 5 . We next give the proof of Theorem 2.1 when x M ,y M is in l 3 {x, y : x<0,y 0}. Lemma 2.11. Suppose there exists an integer M ≥ 0 such that x M ,y M ∈ l 3 . Then the following statements are true. 1 If −9/7 <x M < 0,then{x n ,y n } ∞ nM is eventually the equilibrium solution. 2 If x M −9/7, then the solution {x n ,y n } ∞ nM1 is P 2 5 . 3 If x M < −9/7, then the solution {x n ,y n } ∞ nM is eventually P 1 5 . Proof. 1 We will first prove statement 1 is true. Suppose −9/7 <x M < 0. First consider the case −1 ≤ x M < 0. Then x M1 | x M | − y M − 1 −x M − 1, y M1 x M − y M x M . 2.28 [...]... National Center for Genetic Engineering and Biotechnology References 1 R L Devaney, “A piecewise linear model for the zones of instability of an area-preserving map,” Physica D, vol 10, no 3, pp 387–393, 1984 2 H O Peitgen and D Saupe, Eds., The Science of Fractal Images, Springer, New York, NY, USA, 1991 3 E A Grove and G Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC, Boca... omitted, that xM 6 0 Hence xM 6 , yM 6 ∈ l2 ∪ l4 , and the proof is complete We next give the proof of Theorem 2.1 when xM , yM is in Q3 { x, y : x < 0, y < 0} 12 Advances in Difference Equations Lemma 2.13 Suppose there exists an integer M ≥ 0 such that xM , yM ∈ Q3 Then the following statements are true 1 If yM ≥ −xM − 1, then the solution { xn , yn }∞ M n 2 If yM < −xM − 1, then xM 4 , yM 2 is the equilibrium... hence xM > 0 and yM < 0 Thus xM 1 yM |xM | − yM − 1 1 xM − yM xM − yM − 1, xM yM 2.39 14 Advances in Difference Equations We have xM 1 , yM 1 ∈ Q4 , and thus xM |xM 1 | − yM 2 yM xM 2 1 −1 1 − yM −2yM − 2, 2xM − 1 1 2.40 We also have x2 , y2 ∈ Q4 , and hence xM |xM 2 | − yM 3 yM xM 3 Finally, we have xM 3 , yM xM In particular, xM 4 − yM −1 4 −2xM − 2yM − 2, 2xM − 2yM − 3 2 2.41 ∈ Q4 , and so |xM 3... concerning the global character of the solutions to System 1.1 We divided the real plane into 8 sections and utilized mathematical induction, proof by iteration, and direct computations to show that every solution of System 1.1 is 1 2 eventually either the prime period-5 solution P5 , the prime period-5 solution P5 , or else the unique equilibrium point 0, −1 The proofs involve careful consideration.. .Advances in Difference Equations 11 In particular, −1 < xM 1 ≤ 0 and yM 1 −xM − 1 and so by Lemma 2.2, { xn , yn }∞ M 2 is the n equilibrium solution Next consider the case −9/7 < xM < −1 By statements 1 and 2 of Lemma 2.7, −4xM − 5 In particular, −1 < yM 4 < 1/7 and so by statement 1 of xM 4 0 and yM 4 Lemma 2.8 and... yN / Q4 , then the ∈ proof of Theorem 2.1 is complete Finally, we consider the case where the initial condition xM , yM ∈ Q4 { x, y : x > 0, y < 0} Lemma 2.15 Suppose there exists an integer M ≥ 0 such that xM , yM ∈ Q4 Then there exists a ∈ positive integer N ≤ 4 such that xM N , yM N / Q4 Proof Without loss of generality, it suffices to consider the case where xM n , yM n ∈ Q4 for 0 ≤ n ≤ 3 2.38... 0} Lemma 2.12 Suppose there exists an integer M ≥ 0 such that xM , yM ∈ Q1 Then the following statements are true 1 If yM ≤ xM − 1, then the solution { xn , yn }∞ M n 2 1 is P5 2 If yM > xM − 1, then there exists an integer N such that xM N , yM N ∈ l2 ∪ l4 Proof Suppose xM > 0 and yM > 0 Then xM 1 yM |xM | − yM − 1 xM − yM − 1, Case 1 Suppose yM ≤ xM −1 Then, in particular, xM 0 Thus xM |xM 1 | −... < −9/7 First consider the case −3/2 ≤ xM < −9/7 By statements 1 and 2 of Lemma 2.7, −4xM − 5 In particular, 1/7 < yM 4 ≤ 1 and so by statement 3 of xM 4 0 and yM 4 1 Lemma 2.8, the solution { xn , yn }∞ M 4 is eventually P5 n Next consider the case xM < −3/2 By statement 3 of Lemma 2.7, the solution 1 { xn , yn }∞ M 4 is P5 n We next give the proof of Theorem 2.1 when xM , yM is in Q1 { x, y : x... computation, which will be omitted, that xM 4 0 Thus xM 4 , yM 4 ∈ l2 ∪ l4 and statement 2 is true We next give the proof of Theorem 2.1 when xM , yM is in Q2 { x, y : x < 0, y > 0} Lemma 2 .14 Suppose there exists an integer M ≥ 0 such that xM , yM ∈ Q2 Then the following statements are true 1 If yM ≥ −xM − 1, then xM 1 , yM ∈ Q3 ∪ l4 1 2 If yM ≤ −xM − 3/2, then xM 3 , yM 3 ∈ Q1 ∪ l1 3 If yM < −xM − 1, yM... − 3/2, then xM 1 −xM − yM − 1 > 0 It follows by a straight forward computation, which will be omitted, that xM 3 −2xM yM Hence xM 3 , yM 3 3 −2xM − 2yM − 3 ≥ 0 ∈ Q1 ∪ l1 2yM − 2 > 0, 2.33 Advances in Difference Equations 13 3 If yM < −xM − 1, yM > −xM − 3/2, and xM ≤ −5/4, then xM 1 −xM − yM − 1 > 0 It follows by a straight forward computation, which will be omitted, that xM yM 4yM > 0, 4 2.34 −4xM . Hindawi Publishing Corporation Advances in Difference Equations Volume 2010, Article ID 573281, 14 pages doi:10.1155/2010/573281 Research Article On the Global Character. equilibrium point. 1. Introduction In this paper, we consider the system of piecewise linear difference equations x n1 | x n | − y n − 1, y n1 x n − y n , n 0, 1, 2, , 1.1 where the initial. point 0, −1. 2AdvancesinDifference Equations System 1.1 was motivated by Devaney’s Gingerbread man map 1, 2 x n1 | x n | − x n−1 1 1.2 or its equivalent system of piecewise linear difference