Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2011, Article ID 592840, 9 pages doi:10.1155/2011/592840 ResearchArticleSomeNewDoubleSequenceSpacesDefinedbyOrliczFunctioninn-Normed Space Ekrem Savas¸ Department of Mathematics, Istanbul Commerce University, Uskudar, 34672 Istanbul, Turkey Correspondence should be addressed to Ekrem Savas¸, ekremsavas@yahoo.com Received 1 January 2011; Accepted 17 February 2011 Academic Editor: Alberto Cabada Copyright q 2011 Ekrem Savas¸. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of this paper is to introduce and study somenewdoublesequencespaces with respect to an Orlicz function, and also some properties of the resulting sequencespaces were examined. 1. Introduction We recall that the concept of a 2-normed space was first given in the works of G ¨ ahler 1, 2 as an interesting nonlinear generalization of a normed linear space which was subsequently studied by many authors see, 3, 4. Recently, a lot of activities have started to study summability, sequence spaces, and related topics in these nonlinear spaces see, e.g., 5– 9.Inparticular,Savas¸ 10 combined Orliczfunction and ideal convergence to define somesequencespaces using 2-norm. In this paper, we introduce and study somenew double-sequence spaces, whose elements are form n-normed spaces, using an Orlicz function, which may be considered as an extension of various sequencespaces to n-normed spaces. We begin with recalling some notations and backgrounds. Recall in 11 that an Orliczfunction M : 0, ∞ → 0, ∞ is continuous, convex, and nondecreasing function such that M00andMx > 0forx>0, and Mx →∞as x →∞. Subsequently, Orliczfunction was used to define sequencespacesby Parashar and Choudhary 12 and others. An Orliczfunction M can always be represented in the following integral form: Mx x 0 ptdt,wherep is the known kernel of M, right differential for t ≥ 0, p00, pt > 0fort>0, p is nondecreasing, and pt →∞as t →∞. 2 Journal of Inequalities and Applications If convexity of Orliczfunction M is replaced by Mx y ≤ MxMy, then this function is called Modulus function, which was presented and discussed by Ruckle 13 and Maddox 14. Remark 1.1. If M is a convex function and M00, then Mλx ≤ λMx for all λ with 0 <λ<1. Let n ∈ and X be real vector space of dimension d,wheren ≤ d.Ann-norm on X is afunction·, ,· : X × X ×···×X → which satisfies the following four conditions: i x 1 ,x 2 , ,x n 0 if and only if x 1 ,x 2 , ,x n are linearly dependent, ii x 1 ,x 2 , ,x n are invariant under permutation, iii αx 1 ,x 2 , ,x n |α|x 1 ,x 2 , ,x n , α ∈ , iv x x ,x 2 , ,x n ≤x, x 2 , ,x n x ,x 2 , ,x n . The pair X, ·, ,· is then called an n-normed space 3. Let X d d ≤ n be equipped with the n-norm, then x 1 ,x 2 , ,x n−1 ,x n S : the volume of the n-dimensional parallelepiped spanned by the vectors, x 1 ,x 2 , ,x n−1 ,x n which may be given explicitly by the formula x 1 ,x 2 , ,x n−1 ,x n S x 1 ,x 2 ··· x 1 ,x n . . ··· . x n ,x 1 ··· x n ,x n 1/2 , 1.1 where ·, · denotes inner product. Let X, ·, ,· be an n-normed space of dimension d ≥ n and {a 1 ,a 2 , ,a n } a linearly independent set in X. Then, the function ·, · ∞ on X n−1 is definedby x 1 ,x 2 , ,x n−1 ,x n ∞ : max { x 1 ,x 2 , ,x n−1 ,a i : i 1, 2, ,n } , 1.2 is defines an n − 1 norm on X with respect to {a 1 ,a 2 , ,a n } see, 15. Definition 1.2 see 7.Asequencex k inn-normed space X, ·, ,· is aid to be convergent to an x in X in the n-norm if lim k →∞ x 1 ,x 2 , ,x n−1 ,x k − x 0, 1.3 for every x 1 ,x 2 , ,x n−1 ∈ X. Definition 1.3 see 16.LetX be a linear space. Then, a map g : X → is called a paranorm on X if it is satisfies the following conditions for all x, y ∈ X and λ scalar: i gθ0 θ 0, 0, ,0 is zero of the space, Journal of Inequalities and Applications 3 ii gxg−x, iii gx y ≤ gxgy, iv |λ n − λ|→0 n →∞ and gx n − x → 0 n →∞ imply gλ n x n − λx → 0 n → ∞. 2. Main Results Let X, ·, ,· be any n-normed space, a nd let S n − X denote X-valued sequence spaces. Clearly S n − X is a linear space under addition and scalar multiplication. Definition 2.1. Let M be an Orliczfunction and X, ·, ,· any n-normedspace.Further,let p p k,l be a bounded sequence of positive real numbers. Now, we define the following newdoublesequence space as follows: l M, p, ·, ,· : x ∈ S n − X : ∞,∞ k,l1 M x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l < ∞,ρ>0 , 2.1 for each z 1 ,z 2 , ,z n−1 ∈ X. The following inequalities will be used throughout the paper. Let p p k,l be a doublesequence of positive real numbers with 0 <p k,l ≤ sup k,l p k,l H,andletD max{1, 2 H−1 }. Then, for the factorable sequences {a k } and {b k } in the complex plane, we have as in Maddox 16 | a k,l b k,l | p k,l ≤ D | a k,l | p k,l | b k,l | p k,l . 2.2 Theorem 2.2. l M, p, ·, ,· sequences space is a linear space. Proof. Now, assume that x, y ∈ l M, p, ·, ,· and α, β ∈ . Then, ∞,∞ k,l1 M x k,l ρ 1 ,z 1 ,z 2 , ,z n−1 p k,l < ∞ for some ρ 1 > 0, ∞,∞ k,l1,1 M x k,l ρ 2 ,z 1 ,z 2 , ,z n−1 p k,l < ∞ for some ρ 2 > 0. 2.3 4 Journal of Inequalities and Applications Since ·, ,· is a n-norm on X,andM is an Orlicz function, we get ∞,∞ k,l1,1 M αx k,l βy k,l max | α | ρ 1 , β ρ 2 ,z 1 ,z 2 , ,z n−1 p k,l ≤ D ∞,∞ k,l1,1 | α | | α | ρ 1 β ρ 2 M x k,l ρ 1 ,z 1 ,z 2 , ,z n−1 p k,l D ∞ k,l1,1 β | α | ρ 1 β ρ 2 M y k,l ρ 2 ,z 1 ,z 2 , ,z n−1 p k,l ≤ DF ∞,∞ k,l1,1 M x k,l ρ 1 ,z 1 ,z 2 , ,z n−1 p k,l DF ∞ k,l1,1 M y k,l ρ 2 ,z 1 ,z 2 , ,z n−1 p k,l , 2.4 where F max ⎡ ⎣ 1, | α | | α | ρ 1 β ρ 2 H , β | α | ρ 1 β ρ 2 H ⎤ ⎦ , 2.5 and this completes the proof. Theorem 2.3. l M, p, ·, ,· space is a paranormed space with the paranorm definedby g : l M, p, ·, ,· → g x inf ⎧ ⎨ ⎩ ρ p k,l /H : ∞ k,l1,1 M x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l 1/M ∗ < ∞ ⎫ ⎬ ⎭ , 2.6 where 0 <p k,l ≤ sup p k,l H, M ∗ max1 ,H. Proof. i Clearly, gθ0andii g−xgx. iii Let x k,l ,y k,l ∈ l M, p, ·, ,·,then there exists ρ 1 ,ρ 2 > 0suchthat ∞,∞ k,l1,1 M x k,l ρ 1 ,z 1 ,z 2 , ,z n−1 p k,l < ∞, ∞,∞ k,l1,1 M y k,l ρ 2 ,z 1 ,z 2 , ,z n−1 p k,l < ∞. 2.7 Journal of Inequalities and Applications 5 So, we have M x k,l y k,l ρ 1 ρ 2 ,z 1 ,z 2 , ,z n−1 ≤ M x k,l ρ 1 ρ 2 ,z 1 ,z 2 , ,z n−1 y k,l ρ 1 ρ 2 ,z 1 ,z 2 , ,z n−1 ≤ ρ 1 ρ 1 ρ 2 M x k,l ρ 1 ,z 1 ,z 2 , ,z n−1 ρ 1 ρ 1 ρ 2 M y k,l ρ 2 ,z 1 ,z 2 , ,z n−1 , 2.8 and thus g x y inf ⎧ ⎨ ⎩ ρ 1 ρ 2 p k,l /H : ∞ k,l1,1 M x k,l y k,l ρ 1 ρ 2 ,z 1 , z 2 , ,z n−1 p k,l 1/M ∗ ⎫ ⎬ ⎭ ≤ inf ⎧ ⎨ ⎩ ρ 1 p k,l /H : ∞ k,l1,1 M x k,l ρ 1 ,z 1 ,z 2 , ,z n−1 p k,l 1/M ∗ ⎫ ⎬ ⎭ inf ⎧ ⎨ ⎩ ρ 2 p k,l /H : ∞ k1 M y k,l ρ 2 ,z 1 ,z 2 , ,z n−1 p k,l 1/M ∗ ⎫ ⎬ ⎭ . 2.9 iv Now, let λ → 0andgx n − x → 0 n →∞.Since g λx inf ⎧ ⎨ ⎩ ρ | λ | p k,l /H : ∞ k,l1,1 M λx k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l 1/M ∗ < ∞ ⎫ ⎬ ⎭ . 2.10 This gives us gλx n → 0 n →∞. Theorem 2.4. If 0 <p k,l <q k,l < ∞ for each k and l,thenl M, p, ·, ,· ⊆ l M, q, ·, ,·. Proof. If x ∈ l M, p, ·, ,·, then there exists some ρ>0suchthat ∞,∞ k,l1,1 M x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l < ∞. 2.11 This implies that M x k,l ρ ,z 1 ,z 2 , ,z n−1 < 1, 2.12 6 Journal of Inequalities and Applications for sufficiently large values of k and l.SinceM is nondecreasing, we are granted ∞,∞ k,l1,1 M x k,l ρ ,z 1 ,z 2 , ,z n−1 q k,l ≤ ∞,∞ k,l1,1 M x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l < ∞. 2.13 Thus, x ∈ l M, q, ·, ,·. This completes the proof. The following result is a consequence of the above theorem. Corollary 2.5. i If 0 <p k,l < 1 for each k and l,then l M, p, ·, ,· ⊆ l M, ·, ,· , 2.14 ii If p k,l ≥ 1 for each k and l,then l M, ·, ,· ⊆ l M, p, ·, ,· . 2.15 Theorem 2.6. u u k,l ∈ l ∞ ⇒ ux ∈ l M, p, ·, ,·,wherel ∞ isthedoublespaceofbounded sequences and ux u k,l x k,l . Proof. u u k,l ∈ l ∞ . Then, there exists an A>1suchthat|u k,l |≤A for each k, l.Wewantto show u k,l x k,l ∈ l M, p, ·, ,·.But ∞,∞ k,l1,1 M u k,l x k,l ρ ,z 1 ,z 2 , ,z n−2 ,z n−1 p k,l ∞,∞ k,l1,1 M | u k,l | x k,l ρ ,z 1 ,z 2 , ,z n−2 ,z n−1 p k,l ≤ KA H ∞ k,l1,1 M x k,l ρ ,z 1 ,z 2 , ,z n−2 ,z n−1 p k,l , 2.16 and this completes the proof. Theorem 2.7. Let M 1 and M 2 be Orlicz function. Then, we have l M 1 ,p, ·, ,· l M 2 ,p, ·, ,· ⊆ l M 1 M 2 ,p, ·, ,· . 2.17 Journal of Inequalities and Applications 7 Proof. We have M 1 M 2 x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l M 1 x k,l ρ ,z 1 ,z 2 , ,z n−1 M 2 x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l ≤ D M 1 x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l D M 2 x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l . 2.18 Let x ∈ l M 1 ,p,·, ,· l M 2 ,p,·, ,·; when adding the above inequality from k, l 0, 0to∞, ∞ we get x ∈ l ” M 1 M 2 ,p,·, ,· and this completes the proof. Definition 2 .8 see 10.LetX be a sequence space. Then, X is called solid if α k x k ∈ X whenever x k ∈ X for all sequences α k of scalars with |α k |≤1forallk ∈ . Definition 2.9. Let X be a sequence space. Then, X is called monotone if it contains the canonical preimages of all its step spaces see, 17. Theorem 2.10. The sequence space l M, p, ·, ,· is solid. Proof. Let x k,l ∈ l M, p, ·, ,·;thatis, ∞,∞ k,l1,1 M x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l < ∞. 2.19 Let α k,l be doublesequence of scalars such that |α k,l |≤1forallk, l ∈ × . Then, the result follows from the following inequality: ∞,∞ k,l1,1 M α k,l x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l ≤ ∞,∞ k,l1,1 M x k,l ρ ,z 1 ,z 2 , ,z n−1 p k,l , 2.20 and this completes the proof. We have the following result in view of Remark 1.1 and Theorem 2.10. Corollary 2.11. The sequence space l M, p, ·, ,· is monotone. Definition 2.12 see 18.LetA a m,n,k,l denote a four-dimensional summability method that maps the complex double sequences x into the double-sequence Ax,wherethemnth term to Ax is as follows: Ax m,n ∞,∞ k,l1,1 a m,n,k,l x k,l . 2.21 Such transformation is said to be nonnegative if a m,n,k,l is nonnegative for all m, n, k, and l. 8 Journal of Inequalities and Applications Definition 2.13. Let A a m,n,k,l be a nonnegative matrix. Let M be an Orliczfunction and p k,l a factorable doublesequence of strictly positive real numbers. Then, we define the following sequence spaces: ω 0 M, A, p, ·, ,· x ∈ S n − 1 : lim m,n →∞,∞ ∞,∞ k,l1,1 M a m,n,k,l x k,l ρ ,z 1 ,z 2 , ,z n−2 ,z n−1 p k,l 0 . 2.22 for each z 1 ,z 2 , ,z n−1 ∈ X.Ifx − le ∈ ω 0 M, A, p, ·, ,·,thenwesayx is ω 0 M, A, p, ·, ,· summable to l,wheree 1, 1, . If we take Mxx and p k,l 1forallk, l,thenwehave ω 0 A, p, ·, ,· x ∈ S n − 1 : lim m,n →∞ ∞,∞ k,l1,1 a m,n,k,l x k,l ,z 1 ,z 2 , ,z n−2 ,z n−1 0 . 2.23 Theorem 2.14. ω 0 M, A, p, ·, ,· is linear spaces. Proof. This can be proved by using the techniques similar to those used in Theorem 2.2. Theorem 2.15. 1 If 0 < inf p k,l ≤ p k,l < 1,then ω 0 M, A, p, ·, ,· ⊂ ω 0 M, A, ·, ,· . 2.24 2 If 1 ≤ p k,l ≤ sup p k,l < ∞,then ω 0 M, A, ·, ,· ⊂ ω 0 M, A, p, ·, ,· . 2.25 Proof. 1 Let x ∈ ω 0 M, A, p, ·, ,·;since0< inf p k,l ≤ 1, we have ∞,∞ k,l1,1 M a m,n,k,l x k,l ρ ,z 1 ,z 2 , ,z n−2 ,z n−1 ≤ ∞,∞ k,l1 M a m,n,k,l x k ρ ,z 1 ,z 2 , ,z n−2 ,z n−1 p k,l , 2.26 and hence x ∈ ω 0 M, A, ·, ,·. 2 Let p k,l ≥ 1foreachk, l and sup k,l p k,l < ∞.Letx ∈ ω 0 M, A, ·, ,·. Then, for each 0 <<1, there exists a positive integer such that ∞,∞ k,l1,1 M a m,n,k,l x k,l ρ ,z 1 ,z 2 , ,z n−2 ,z n−1 ≤ <1, 2.27 Journal of Inequalities and Applications 9 for all m, n ≥ . This implies that ∞,∞ k,l1,1 M a m,n,k,l x k,l ρ ,z 1 ,z 2 , ,z n−2 ,z n−1 p k,l ≤ ∞ k,l1 M a m,n,k,l x k,l ρ ,z 1 ,z 2 , ,z n−2 ,z n−1 . 2.28 Thus, x ∈ ω 0 M, A, p, ·, ,·, and this completes the proof. Acknowledgments The author wishes to thank the referees for their careful reading of the paper and for their helpful suggestions. References 1 S. G ¨ ahler, “Lineare 2-normierte R ¨ aume,” Mathematische Nachrichten, vol. 28, pp. 1–43, 1965. 2 S. G ¨ ahler, “ ¨ Uber die Uniformisierbarkeit 2-metrischer R ¨ aume,” Mathematische Nachrichten, vol. 28, pp. 235–244, 1965. 3 H. Gunawan, “The space of p-summable sequences and its natural n-norm,” Bulletin of the Australian Mathematical Society, vol. 64, no. 1, pp. 137–147, 2001. 4 R. W. Freese and Y. J. Cho, Geometry of Linear 2-Normed Spaces, Nova Science Publishers, Hauppauge, NY, USA, 2001. 5 A. S¸ahiner, M. G ¨ urdal, S. Saltan, and H. Gunawan, “Ideal convergence in 2-normed spaces,” Taiwanese Journal of Mathematics, vol. 11, no. 5, pp. 1477–1484, 2007. 6 M. G ¨ urdal and S. Pehlivan, “Statistical convergence in 2-normed spaces,” Southeast Asian Bulletin of Mathematics, vol. 33, no. 2, pp. 257–264, 2009. 7 H. Gunawan and M. Mashadi, “On n-normed spaces,” International Journal of Mathematics and Mathematical Sciences, vol. 27, no. 10, pp. 631–639, 2001. 8 A. Sahiner and M. Gurdal, “New sequencespacesinn-normedspaces with respect to an Orlicz function,” The Aligarh Bulletin of Mathematics, vol. 27, no. 1, pp. 53–58, 2008. 9 E. Savas¸, “On somenewsequencespacesin 2-normed spaces using ideal convergence and an Orlicz function,” journal of Inequalities and Applications, vol. 2010, Article ID 482392, 8 pages, 2010. 10 E. Savas¸, “Δ m -strongly summable sequences spacesin 2-normed spacesdefinedby ideal convergence and an Orlicz function,” Applied Mathematics and Computation, vol. 217, no. 1, pp. 271–276, 2010. 11 M. A. Krasnoselski and Y. B. Rutisky, Convex Function and Orlicz Spaces, Noordhoff, Groningen, The Netherlands, 1961. 12 S. D. Parashar and B. Choudhary, “Sequence spacesdefinedbyOrlicz functions,” Indian Journal of Pure and Applied Mathematics, vol. 25, no. 4, pp. 419–428, 1994. 13 W. H. Ruckle, “FK spacesin which the sequence of coordinate vectors is bounded,” Canadian Journal of Mathematics. Journal Canadien de Math ´ ematiques, vol. 25, pp. 973–978, 1973. 14 I. J. Maddox, “Sequence spacesdefinedby a modulus,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 100, no. 1, pp. 161–166, 1986. 15 H. Gunawan, “On n-inner products, n-norms, and the Cauchy-Schwarz inequality,” Scientiae Mathematicae Japonicae, vol. 55, no. 1, pp. 53–60, 2002. 16 I. J. Maddox, Elements of Functional Analysis, Cambridge University Press, London, UK, 1970. 17 P. K. Kampthan and M. Gupta, SequenceSpaces and Series,vol.65ofLectur e Notes in Pure and Applied Mmathematics, Marcel Dekker, New York, NY, USA, 1981. 18 E. Savas and R. F. Patterson, “On somedoublesequencespacesdefinedby a modulus,” Math. Slovaca, vol. 61, no. 2, pp. 1–12, 2011. . this paper is to introduce and study some new double sequence spaces with respect to an Orlicz function, and also some properties of the resulting sequence spaces were examined. 1. Introduction We. study summability, sequence spaces, and related topics in these nonlinear spaces see, e.g., 5– 9.Inparticular,Savas¸ 10 combined Orlicz function and ideal convergence to define some sequence spaces using. 2-norm. In this paper, we introduce and study some new double- sequence spaces, whose elements are form n-normed spaces, using an Orlicz function, which may be considered as an extension of various sequence