Tai ngay!!! Ban co the xoa dong chu nay!!! Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page i — # Fundamentals of Ship Hydrodynamics j j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page i — # Fundamentals of Ship Hydrodynamics Fluid Mechanics, Ship Resistance and Propulsion Lothar Birk School of Naval Architecture and Marine Engineering The University of New Orleans New Orleans, LA United States j j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page ii — # This edition first published © John Wiley & Sons Ltd All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions The right of Lothar Birk to be identified as the author of this work has been asserted in accordance with law Registered Offices John Wiley & Sons, Inc., River Street, Hoboken, NJ , USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO SQ, UK Editorial Office The Atrium, Southern Gate, Chichester, West Sussex, PO SQ, UK For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com Wiley also publishes its books in a variety of electronic formats and by print-on-demand Some content that appears in standard print versions of this book may not be available in other formats j Limit of Liability/Disclaimer of Warranty In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make This work is sold with the understanding that the publisher is not engaged in rendering professional services The advice and strategies contained herein may not be suitable for your situation You should consult with a specialist where appropriate Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages Library of Congress Cataloging-in-Publication Data Names: Birk, Lothar, - author Title: Fundamentals of ship hydrodynamics : fluid mechanics, ship resistance and propulsion / Lothar Birk, University of New Orleans Description: Hoboken, NJ : John Wiley & Sons, Ltd, [] | Includes bibliographical references and index Identifiers: LCCN | ISBN (hardcover) | ISBN (epub) Subjects: LCSH: Ships–Hydrodynamics Classification: LCC VM B | DDC ./–dc LC record available at https://lccn.loc.gov/ Cover Design: Wiley Cover Image: © zennie / Getty Images Set in pt Warnock Pro Regular by Lothar Birk Printed in Great Britain by TJ International Ltd, Padstow, Cornwall j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page iii — # v To My Family They make everything worthwhile! j j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page v — # vii Contents List of Figures xvii List of Tables xxvii Preface xxxi Acknowledgments xxxv About the Companion Website xxxvii j . . . Ship Hydrodynamics Calm Water Hydrodynamics Ship Hydrodynamics and Ship Design Available Tools . . . .. .. . .. .. . Ship Resistance Total Resistance Phenomenological Subdivision Practical Subdivision Froude’s hypothesis ITTC’s method Physical Subdivision Body forces Surface forces Major Resistance Components . . .. .. .. . . Fluid and Flow Properties A Word on Notation Fluid Properties Properties of water Properties of air Acceleration of free fall Modeling and Visualizing Flow Pressure . . .. .. .. .. Fluid Mechanics and Calculus Substantial Derivative Nabla Operator and Its Applications Gradient Divergence Rotation Laplace operator . . Continuity Equation Mathematical Models of Flow Infinitesimal Fluid Element Fixed in Space j j Trim Size: mm × mm Single Column Tight viii j j Birk — “fshy” — // — : — page vi — # Contents . . . . Finite Control Volume Fixed in Space Infinitesimal Element Moving With the Fluid Finite Control Volume Moving With the Fluid Summary . . .. .. .. .. . . Navier-Stokes Equations Momentum Conservation of Momentum Time rate of change of momentum Momentum flux over boundary External forces Conservation of momentum equations Stokes’ Hypothesis Navier-Stokes Equations for a Newtonian Fluid . . Special Cases of the Navier-Stokes Equations Incompressible Fluid of Constant Temperature Dimensionless Navier-Stokes Equations . . . . Reynolds Averaged Navier-Stokes Equations (RANSE) Mean and Turbulent Velocity Time Averaged Continuity Equation Time Averaged Navier-Stokes Equations Reynolds Stresses and Turbulence Modeling . . .. .. Application of the Conservation Principles Body in a Wind Tunnel Submerged Vessel in an Unbounded Fluid Conservation of mass Conservation of momentum 10 . .. .. .. . . Boundary Layer Theory Boundary Layer Boundary layer thickness Laminar and turbulent flow Flow separation Simplifying Assumptions Boundary Layer Equations 11 . . . .. .. .. .. . Wall Shear Stress in the Boundary Layer Control Volume Selection Conservation of Mass in the Boundary Layer Conservation of Momentum in the Boundary Layer Momentum flux over boundary of control volume Surface forces acting on control volume Displacement thickness Momentum thickness Wall Shear Stress j j Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page vii — # j Contents j 12 . . . . . . . Boundary Layer of a Flat Plate Boundary Layer Equations for a Flat Plate Dimensionless Velocity Profiles Boundary Layer Thickness Wall Shear Stress Displacement Thickness Momentum Thickness Friction Force and Coefficients 13 . . . . . . . Frictional Resistance Turbulent Boundary Layers Shear Stress in Turbulent Flow Friction Coefficients for Turbulent Flow Model–Ship Correlation Lines Effect of Surface Roughness Effect of Form Estimating Frictional Resistance 14 . . . Inviscid Flow Euler Equations for Incompressible Flow Bernoulli Equation Rotation, Vorticity, and Circulation 15 . . . . Potential Flow Velocity Potential Circulation and Velocity Potential Laplace Equation Bernoulli Equation for Potential Flow 16 . . . . .. .. . Basic Solutions of the Laplace Equation Uniform Parallel Flow Sources and Sinks Vortex Combinations of Singularities Rankine oval Dipole Singularity Distributions 17 . .. .. . . .. .. . . Ideal Flow Around A Long Cylinder Boundary Value Problem Moving cylinder in fluid at rest Cylinder at rest in parallel flow Solution and Velocity Potential Velocity and Pressure Field Velocity field Pressure field D’Alembert’s Paradox Added Mass j ix j Trim Size: mm × mm Single Column Tight x j j Birk — “fshy” — // — : — page viii — # Contents 18 . . Viscous Pressure Resistance Displacement Effect of Boundary Layer Flow Separation 19 . . . Waves and Ship Wave Patterns Wave Length, Period, and Height Fundamental Observations Kelvin Wave Pattern 20 . . .. .. .. .. . Wave Theory Overview Mathematical Model for Long-crested Waves Ocean bottom boundary condition Free surface boundary conditions Far field condition Nonlinear boundary value problem Linearized Boundary Value Problem 21 . . . . Linearization of Free Surface Boundary Conditions Perturbation Approach Kinematic Free Surface Condition Dynamic Free Surface Condition Linearized Free Surface Conditions for Waves 22 . . . . Linear Wave Theory Solution of Linear Boundary Value Problem Far Field Condition Revisited Dispersion Relation Deep Water Approximation 23 . . . . . Wave Properties Linear Wave Theory Results Wave Number Water Particle Velocity and Acceleration Dynamic Pressure Water Particle Motions 24 . . .. .. .. . Wave Energy and Wave Propagation Wave Propagation Wave Energy Kinetic wave energy Potential wave energy Total wave energy density Energy Transport and Group Velocity 25 . . . Ship Wave Resistance Physics of Wave Resistance Wave Superposition Michell’s Integral j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page ix — # Contents j . Panel Methods 26 . .. .. . .. .. .. . Ship Model Testing Testing Facilities Towing tank Cavitation tunnel Ship and Propeller Models Turbulence generation Loading condition Propeller models Model Basins 27 . . . Dimensional Analysis Purpose of Dimensional Analysis Buckingham 𝜋-Theorem Dimensional Analysis of Ship Resistance 28 . .. .. .. .. . .. .. .. Laws of Similitude Similarities Geometric similarity Kinematic similarity Dynamic similarity Summary Partial Dynamic Similarity Hypothetical case: full dynamic similarity Real world: partial dynamic similarity Froude’s hypothesis revisited 29 . . . . . Resistance Test Test Procedure Reduction of Resistance Test Data Form Factor 𝑘 Wave Resistance Coefficient 𝐶𝑊 Skin Friction Correction Force 𝐹𝐷 30 . . . . Full Scale Resistance Prediction Model Test Results Corrections and Additional Resistance Components Total Resistance and Effective Power Example Resistance Prediction 31 . . .. .. .. . .. Resistance Estimates – Guldhammer and Harvald’s Method Historical Development Guldhammer and Harvald’s Method Applicability Required input Resistance estimate Extended Resistance Estimate Example Completion of input parameters j xi j Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page — # j 51.4 Resistance and Propulsion Estimate Example Table 51.14 𝑣𝑆 [kn] 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 𝑣𝑆 [m∕s] 7.717 7.974 8.231 8.488 8.746 9.003 9.260 9.517 9.774 647 Self propulsion point based on mean resistance curve 𝐹𝑟 [−] 0.2019 0.2086 0.2153 0.2221 0.2288 0.2355 0.2422 0.2490 0.2557 𝑤𝑇𝑆 [−] 0.3028 0.3030 0.3031 0.3032 0.3033 0.3035 0.3036 0.3037 0.3038 𝑣𝐴 [m∕s] 5.380 5.558 5.736 5.914 6.093 6.271 6.449 6.627 6.805 𝐶𝑆 [−] 0.59864 0.60852 0.61995 0.63291 0.64741 0.66345 0.68103 0.70014 0.72078 𝐽𝑇𝑆 [−] 0.6163 0.6133 0.6099 0.6061 0.6019 0.5973 0.5925 0.5874 0.5820 𝐾𝑇𝑆 10𝐾𝑄𝑇𝑆 [−] [−] 0.2274 0.3754 0.2289 0.3774 0.2306 0.3796 0.2325 0.3821 0.2345 0.3848 0.2367 0.3878 0.2391 0.3909 0.2416 0.3942 0.2442 0.3976 Table 51.15 Prediction of rate of revolution and delivered power for trial condition based on mean resistance curve j 𝑣𝑆 [kn] 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 𝑣𝑆 [m∕s] 7.717 7.974 8.231 8.488 8.746 9.003 9.260 9.517 9.774 Table 51.16 𝑣 [kn] 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 𝐹𝑟 [−] 0.2019 0.2086 0.2153 0.2221 0.2288 0.2355 0.2422 0.2490 0.2557 𝑇 [kN] 426.80 463.08 502.52 545.40 592.02 642.69 697.73 757.48 822.28 𝑄 [kNm] 342.15 370.76 401.76 435.36 471.78 511.23 553.96 600.22 650.25 𝑛 [1∕s] 1.781 1.849 1.919 1.992 2.066 2.142 2.221 2.302 2.386 𝑛 [rpm] 106.877 110.964 115.169 119.497 123.955 128.546 133.276 138.149 143.170 𝑃𝐷 [kW] 3829.36 4308.25 4845.40 5447.98 6123.89 6881.85 7731.49 8683.37 9749.06 Predicted efficiencies based on mean resistance curve 𝑣 [m/s] 7.717 7.974 8.231 8.488 8.746 9.003 9.260 9.517 9.774 𝐹𝑟 [−] 0.2019 0.2086 0.2153 0.2221 0.2288 0.2355 0.2422 0.2490 0.2557 𝜂𝑂 [−] 0.5942 0.5921 0.5896 0.5868 0.5837 0.5804 0.5768 0.5729 0.5689 𝜂𝐵 [−] 0.5996 0.5974 0.5949 0.5921 0.5890 0.5856 0.5820 0.5781 0.5740 𝜂𝐻 [−] 1.1619 1.1621 1.1623 1.1625 1.1627 1.1629 1.1631 1.1633 1.1634 𝜂𝐷 [−] 0.6967 0.6942 0.6915 0.6883 0.6848 0.6810 0.6769 0.6725 0.6678 efficiency of .% is achieved at the design speed of . kn This could possibly be improved by designing a wake adapted propeller using lifting line theory and other methods j j Trim Size: mm × mm Single Column Tight Birk — “fshy” — // — : — page — # j 51 Hollenbach’s Method 648 Comparison of predicted rate of revolution and delivered power Table 51.17 Guldhammer and Harvald Hollenbach 𝑣𝑆 𝑛min 𝑃𝐷min 𝑛mean 𝑃𝐷mean 𝑛max 𝑃𝐷max 𝑛 𝑃𝐷 [kn] 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 [rpm] 101.84 105.81 109.91 114.14 118.52 123.04 127.71 132.53 137.52 [kW] 3134.85 3540.31 3998.65 4516.78 5102.39 5764.01 6511.05 7353.89 8303.96 [rpm] 106.88 110.96 115.17 119.50 123.96 128.55 133.28 138.15 143.17 [kW] 3829.36 4308.25 4845.40 5447.98 6123.89 6881.85 7731.49 8683.37 9749.06 [rpm] 113.18 117.54 122.03 126.66 131.44 136.36 141.44 146.68 152.08 [kW] 4816.33 5420.96 6099.78 6861.99 7717.78 8678.38 9756.18 10964.81 12319.22 [rpm] 111.81 115.88 120.05 124.34 128.79 133.42 138.31 143.86 150.28 [kW] 4067.26 4545.39 5077.00 5671.91 6343.20 7108.52 7992.05 9121.81 10598.40 Holtrop and Mennen Table . 𝑛 𝑃𝐷 [rpm] 112.99 117.28 121.70 126.27 130.95 135.70 140.54 145.52 150.75 [kW] 4637.23 5208.37 5850.65 6573.49 7378.31 8263.98 9239.76 10328.13 11573.40 14000 mean PD Hollenbach PD Guldhammer and Harvald 12000 delivered power PD [kW] j PD Holtrop and Mennen j PDmin − PDmax range Hollenbach 10000 8000 6000 results for design speed 17.5 kn 4000 2000 100 110 120 130 rate of revolution n 140 150 160 [rpm] Figure 51.2 Comparison of predicted rate of revolution and delivered power for the methods by Hollenbach, Guldhammer and Harvald, and Holtrop and Mennen Comparison Table . and Figure . present a comparison of the estimated rate of revolution and delivered power for the prediction methods discussed in this book Although the curves are close together there are differences, especially in the predicted rate of revolution j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page — # 51.4 Resistance and Propulsion Estimate Example 649 for each speed Circles mark the values predicted for the design speed Holtrop and Mennen’s method predicts the highest delivered power of 𝑃𝐷 = 9414.4 kW at a rate of revolution of 𝑛 = 170.53 rpm Hollenbach’s estimate is the most optimistic with a delivered power of . kW at . rpm An engine may be selected based on the powering prediction The delivered power is converted into the engine brake power 𝑃𝐵 via Equations (.) and (.) Proper sea and engine margins have to be added to the brake power predicted for trial conditions The final combination of rate of revolution and brake power is matched with the engine layout diagram This is a marine engineering rather than a hydrodynamic problem The reader can find details in the engine selection guides published by engine manufacturers Engine selection The spread of the predicted power values is an indication of the uncertainty intrinsic to resistance and propulsion estimates used in early design phases Better results can hardly be expected since only a few form parameters are used to describe the hull shape Too much of the flow patterns depends on details of the hull geometry, which will not be known until the lines plan is completed Once the lines are faired, a model may be manufactured and tested The hull geometry may also serve as the starting point for a CFD analysis if computational resources and expertise are available Conclusion References j Andersen, P and Guldhammer, H () A computer-oriented power prediction procedure In Proc of Int Conf on Computer Aided Design, Manufacture, and Operation in the Marine and Offshore Industries (CADMO ’), Washington, DC, USA Hollenbach, K () Verfahren zur Abschätzung von Widerstand und Propulsion von Ein- und Zweischraubenschiffen im Vorentwurf In Jahrbuch der Schiffbautechnischen Gesellschaft, volume , pages – Schiffbautechnische Gesellschaft (STG) Hollenbach, K (a) Beitrag zur Abschätzung von Widerstand und Propulsion von Ein- und Zweischraubenschiffen im Vorentwurf PhD thesis, Institut für Schiffbau, Universität Hamburg, Hamburg, Germany Hollenbach, K (b) Beitrag zur Abschätzung von Widerstand und Propulsion von Ein- und Zweischraubenschiffen im Vorentwurf IfS Report , Institut für Schiffbau, Universität Hamburg, Hamburg, Germany Hollenbach, K (a) Estimating resistance and propulsion for single-screw and twin-screw ships Schiffstechnik/Ship Technology Research, ():– Hollenbach, K (b) Weiterentwicklung eines verfahrens zur Abschätzung von Widerstand und Propulsion von Ein- und Zweischraubenschiffen im Vorentwurf In Jahrbuch der Schiffbautechnischen Gesellschaft, volume , pages – Berlin Hollenbach, K () Estimating resistance and propulsion for single-screw and twinscrew ships in the preliminary design In Proc of th Int Conference on Computer Applications in Shipbuilding (ICCAS ’) Holtrop, J () A statistical re-analysis of resistance and propulsion data International Shipbuilding Progress, ():– j j Trim Size: mm × mm Single Column Tight 650 j Birk — “fshy” — // — : — page — # 51 Hollenbach’s Method Holtrop, J () A statistical resistance prediction method with a speed dependent form factor In Scientific and Methodological Seminar on Ship Hydrodynamics (SMSSH ’), Varna, Bulgaria Holtrop, J and Mennen, G () An approximate power prediction method International Shipbuilding Progress, ():– ITTC () ITTC performance prediction method International Towing Tank Conference, Recommended Procedures and Guidelines .---. Revision Self Study Problems Discuss the principal differences and similarities between the resistance estimates based on Guldhammer and Harvald’s method, Holtrop and Mennen’s method, and Hollenbach’s method For a ship design project the following data is provided Ship data j length between perpendiculars length in waterline molded beam molded draft block coefficient (based on 𝐿𝑃𝑃 ) prismatic coefficient (based on 𝐿𝑃𝑃 ) 𝐿𝑃𝑃 𝐿𝑊𝐿 𝐵 𝑇 𝐶𝐵 𝐶𝑃 = . m = . m = . m = . m = . = . Compute the input values for block coefficient 𝐶𝐵 and prismatic coefficient 𝐶𝑃 for Hollenbach’s method Compare the results with the values from the corresponding problem at the end of Chapter Implement Hollenbach’s resistance and propulsion estimate as a program in Python, Matlab, or similar, and test it with the data presented in the last section j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page — # 651 Index A j Actuator disk Added mass Admiralty coefficient Advance coefficient , , , , –, Airy, Sir George Biddell American Towing Tank Conference see ATTC Angle of attack , , , , , effective ideal –, induced zero lift , Appendage Archimedes Archimedes’ principle , , , , ATTC Averaging B Behind condition , , , , , , , adjustment Bernoulli equation , , –, , , , linearized , , , , potential flow –, , , , steady flow , , , unsteady flow , , Bertrand, Joseph Bilge keels Biot, Jean-Baptiste Biot–Savart law – Blade see Propeller, blade Blockage correction , , factor Schuster’s correction Tamura’s correction Boiling point Bollard pull Boundary condition body , , , , , , , , , Dirichlet far field , , , free surface see Free surface kinematic , , mixed Neumann , ocean bottom Boundary layer , , , , buffer layer equations inner law inner scaling laminar log–wake law logarithmic overlap law modified log–wake law no slip condition outer scaling overlap layer , separation thickness , , , turbulent , –, viscous sublayer , , wall layer wall shear stress Boundary layer theory , – assumptions Boundary value problem cylinder j j Trim Size: mm × mm Single Column Tight 652 j Index Chord length , , , , Circulation , , , bound , free Coefficient block , , , , , , , , , , , , midship section prismatic , , , , , waterplane area Collocation point Computational Fluid Dynamics see CFD Condition behind , , , calm water , , loading , , open water , , , , , , , , , , , service , trial , , Conformal mapping Conservation of mass , , , , , , , , of momentum –, , , , , , integral form Conservative Continuity equation –, , , , , differential, conservative , differential, nonconservative incompressible, steady flow , integral form integral, nonconservative integral, conservative Contraction nozzle , Control volume differential , fixed moving finite see Control volume, displacement flow (thin foil) , lifting flow (thin foil) , linear wave theory moving cylinder , thin foil Boussinesq’s eddy viscosity hypothesis Boussinesq, Joseph V British method see Propulsion test, load variation Buckingham 𝜋-theorem Buckingham, Edgar Bulbous bow , , , , resistance , Burrill % back cavitation criterion , , , cavitation chart , Burrill, Lennard Constantine j Birk — “fshy” — // — : — page — # C Camber , , , maximum Cauchy principal value integral –, Cauchy, Augustin-Louis Cavitation , bubble , cloud effects – face hub vortex inception prevention – propeller–hull sheet test tip vortex tunnel Cavitation criterion see Burrill Cavitation number free stream propeller , CFD , , , , , Chapman, Fredrik H af j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page — # Index integral infinitesimally small see Control volume, differential integral , , fixed moving Coordinate system Cartesian xvii, , cylindrical polar , spherical Correlation lines Cupping see Propeller blade, cupping D j d’Alembert’s paradox , , , d’Alembert, Jean-Baptiste le Rond , Density of air of fresh water of seawater Derivative convective directional local normal see Normal derivative partial substantial , Differential equation ordinary , , partial , , , , , , Differential equations partial Dimensional analysis –, Dipole Direct numerical simulation (DNS) , Dispersion relation , , Displacement effect , , , , , thickness , , , volumetric , 653 Divergence –, , , , , , theorem , Downwash , , Drag , , , coefficient , , , , , , induced E Efficiency behind , gearing hull , , , ideal , , open water , , , –, , , , , quasi-propulsive , relative rotative , , –, , , , shafting total propulsive Energy kinetic , , potential Entrance half angle of Euler equations , formula , number , Euler, Leonard , , Eulerian formulation , Expanded area Expanded area ratio , , required , , F Field point see Collocation point theory Flat plate friction coefficient ATTC, Schoenherr Grigson ITTC see ITTC, model–ship correlation line Prandtl–Schlichting White j j Trim Size: mm × mm Single Column Tight 654 j Birk — “fshy” — // — : — page — # j Index Flow cylinder , displacement , , , exterior , , interior irrotational laminar , lifting , , , parallel , –, , , , , Rankine oval source steady , , , , , turbulent , unsteady , , , , , , viscous , , , , , , vortex wave , Fluid ideal , , incompressible , , isotropic Newtonian , , viscous , , , , Flux mass , , , , , momentum , , , , , , Foil see Lifting foil Foil section , , camber see Camber chord length see Chord length geometry thickness Force body , , , conservative external , , , friction gravity inertia , , pressure , , , , , surface , , viscous Form factor , , , , appendage Granville Grigson Holtrop and Mennen Prohaskas’s method Watanabe Free surface , , , dynamic boundary condition , , elevation generalized boundary condition , kinematic boundary condition , , , Froude depth number number , , , , , similarity Froude’s hypothesis , , law of similarity method , Froude, William , , , , G Gas Gauss’ integral theorem Glauert integral , , series , , , , Glauert, Hermann Gradient Gravitational acceleration , function of latitude local standard value Group velocity , , Guldhammer, H.E H Harvald, Svend Aage Helmholtz’s theorems , , , , Helmholtz, Hermann von Hollenbach, Uwe Holtrop, Jan j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page — # Index Hooke’s law Hooke, Robert Hot wire anemometer Hull–propeller interaction Hydraulically actuated smooth , Hydrometer Hydrostatic equilibrium Hydrostatics basic theorem of I j IAPWS Interaction hull–propeller , , Intermittency factor International Association for the Properties of Water and Steam see IAPWS International Towing Tank Conference see ITTC ITTC xvii, , , , , , , , , , , , model–ship correlation line , , , , , , , , , , , , , , , , , , , performance prediction method , , , performance prediction procedure J Jet efficiency see Efficiency, ideal Joukowsky, Nikolay Yegorovich K Keller’s formula , , Keller, J auf ’m Kelvin angle wave pattern – Kelvin, Lord Kinematic Kinetic Kutta condition , Kutta, Martin Wilhelm 655 Kutta-Joukowsky’s lift theorem , , , , , L Lagrange, Joseph-Louis Lagrangian formulation Landau’s symbol Laplace equation , –, , , , , , , , , , , , , cylindrical coordinates polar coordinates , spherical coordinates Laplace operator , , dimensionless Laplace, Pierre-Simon , Leading edge , suction Length characteristic computation in waterline over wetted surface Length–displacement ratio Lift , , , , Lift coefficient , , , , Lift force Lift–drag ratio , Lifting foil , –, Lifting line Lifting line theory , Liquid Load variation test M Margin engine service , , Mass transport (in waves) Mass flow rate see Flux, mass Mass flux see Flux, mass Mathematical models , Matrix multiplication Maximum continuous rating Mean line , , j j Trim Size: mm × mm Single Column Tight 656 Index NACA 𝑎 = 0.8 parabolic Mennen, G.G.J Michell’s integral – Michell, John Henry Model basin , test testing – Moment pitch Momentum flux see Flux, momentum thickness , , , , , Moody chart Motion steady unsteady Normal vector , , , , , , , , , , , –, , , , , , , , , , , Normal velocity see Velocity, normal O Open water condition see Condition, open water Open water diagram , , , , , , , , Open water efficiency see Efficiency, open water Open water test –, , , , , , P Paint flow test Panel methods Pathline Performance prediction , , , , – Perturbation Phase velocity , , , deep water Pitch , , angle , , constant effective variable , , Pitch–diameter ratio , , , , optimum , Pitot, Henri Pitot-static tube , Potential see also Velocity potential, of gravity Potential flow , , –, , , , , Potential theory , , , , Power brake , delivered , , , , , effective , , , shaft thrust , , , N j Birk — “fshy” — // — : — page — # j Nabla operator , dimensionless NACA NASA Naval architect Navier, Claude L.M.H Navier, Claude Louis Marie Henri Navier-Stokes equations –, , , conservative, differential dimensionless incompressible flow incompressible, steady flow Navier-Stokes equations, Reynolds averaged see RANSE Newton’s first law laws of motion second law , , , , , Newton, Sir Isaac , , Newton-Raphson method Newtonian fluid see Fluid, Newtonian Nomenclature xvii Nonconservative Normal derivative , , j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page — # Index j Power law Powering estimate comparison example , – Hollenbach – Holtrop and Mennen – Prandtl, Ludwig , , , Pressure , atmospheric , coefficient , , , , , , , , , , , difference shock vapor , , , Preturbulence , , Propeller azimuthing clearance controllable pitch , , developed area diameter , , , ducted expanded area ratio see Expanded area ratio fixed pitch , high skew left-handed lightly loaded loading see Thrust loading number of blades , pitch–diameter ratio see Pitch–diameter ratio podded projected area , rake see Rake right-handed skew see Skew slip , stock Voith Schneider warp wheel effect Propeller blade back cupping expanded face leading edge radius tip trailing edge Propeller boat see Propeller dynamometer Propeller design constant , , task –, – task task task , – Propeller design chart – 𝐵𝑃1 -chart , 𝐵𝑃2 -chart 𝐵𝑈1 -chart 𝐵𝑈2 -chart , logarithmic chart Propeller dynamometer , , Propeller hub radius , vortex Propeller selection optimum diameter –, – optimum rate of revolution –, – Propeller series – controllable pitch ducted Gawn KCA Newton–Rader skew Wageningen B-Series – Propulsion test – continental method , load variation Propulsor , , , , , R Rake , angle skew induced Rankine oval , , source , j 657 j Trim Size: mm × mm Single Column Tight 658 j Birk — “fshy” — // — : — page — # j Index residuary , , , , , steering total , , , , wave , , , Resistance estimate comparison example –, –, – Guldhammer and Harvald – Hollenbach – Holtrop and Mennen – Reynolds averaging stress tensor , , – stresses Reynolds number , , , , , , , , at radius 𝑥 = 0.75 , local , Reynolds, Osborne , , , Rheology Roughness equivalent sand , propeller technical Roughness allowance see Resistance, roughness allowance Run , , , length of , , Rankine, William J.M RANSE , , – Rate of revolution , , , , , Reech, Ferdinand , Region multiply connected simply connected Relaminarization Resistance – air , appendage , , , , , bow thruster bow thruster tunnel , bulbous bow components , correlation allowance eddy frictional , –, , –, , hollows , humps , induced residuary , , , roughness allowance , , shape factors spray steering total , , , , , , , , , , transom , viscous , , , , , viscous pressure , , , wave , , , , , , , , –, , – wave breaking , wave pattern , Resistance coefficient air , , appendage bow thruster tunnel correlation allowance , , , environmental frictional , , , , S Sagitta Salinity Savart, Félix Scale acceleration factor force , geometric length , , model surface , time , velocity volume , Schlichting, Hermann j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page — # Index j Schneekluth nozzle Self propulsion point , , , , , , , , , , Self-propelled , Separation laminar flow point turbulent flow Separation of variables , Series Shock free entry Shortened thrust loading coefficient , , Similarity dynamic Froude full dynamic geometric kinematic laws of partial Singularity , Sink Sinkage aft dynamic , fore mean , , Skew angle Skew-back Skin friction correction force , Source distribution point strength , Speed corresponding , design Speed of advance , , , , Stagnation point , , , , , , , , , Stall Stokes hypothesis 659 wave theory Stokes, Sir George Gabriel , , , Streakline Streamline , , , dividing , Stress apparent normal shear , tensor wall shear , Strouhal number Strouhal, Vinzenz Suction side Surface free see Free surface fully rough hydraulically smooth , roughness , , T Tail–nose line , , , , , , Taylor series , , , , , series, several variables series, single variable Taylor Standard Series Taylor, Brook Taylor, David Watson , , , TEU , , Thickness distribution elliptical , ogival Thickness ratio Thin foil theory – Thomson, William see Kelvin, Lord Thrust , , , , , , , , , , , , , , , , , available bearing blade section coefficient , , , , , , , , coefficient correction j j Trim Size: mm × mm Single Column Tight 660 j j Birk — “fshy” — // — : — page — # Index effect of cavitation identity , , , , , , required , , , , Thrust deduction , Thrust deduction fraction , , –, , –, , Guldhammer and Harvald Hollenbach Holtrop and Mennen Thrust loading , , , , coefficient , , , , , Torque , , , , available blade section coefficient , , , , , , coefficient correction effect of cavitation identity , Towing carriage Towing point Towing tank , , , beach Trailing edge , , Trial corrections Trim angle , , running Trim tank Turbulence , generation , , isotropic , longitudinal mean kinetic energy , model , transverse U Updraft dot product magnitude , Vector field irrotational Velocity attainable mean , normal , , , –, , turbulent wall friction , Velocity defect law Velocity potential , , , D dipole D source D vortex , D dipole D source cylinder flow of deep water wave , disturbance , , , , , , , , , moving cylinder parallel flow , , Rankine oval of regular wave , Vessel displacement type , , , , , , planing type , , Viscosity apparent see Viscosity, eddy dynamic , eddy , eddy, kinematic kinematic , , , , second Vortex bound distribution filament flow horseshoe start-up , strength , , , , , , , tip Vortex sheet V Vector component cross product j j Trim Size: mm × mm Single Column Tight j Birk — “fshy” — // — : — page — # Index roll up trailing Vorticity bound free , W j Wake , , , effect of rudder effective frictional , , nominal nonuniform potential , wave , Wake fraction , –, , , , , frictional full scale Guldhammer and Harvald Hollenbach – Holtrop and Mennen potential Wake function Wake hook Water fresh , sea , Water jet Wave amplitude , crest diffraction dispersion , divergent , dynamic pressure elevation , frequency , height , length , , , , long-crested , particle acceleration particle path particle velocity pattern , period phase , profile radiation regular , superposition , transverse , trough Wave energy density kinetic , , potential , , transport , Wave maker , Wave number , , , deep water , Wave theory Airy see Wave theory, linear, boundary value problem linear , – linearized boundary value problem ocean bottom condition radiation condition Stokes Wetted surface , appendages Hollenbach Holtrop and Mennen Kristensen and Lützen Mumford’s formula Wheel effect Wigley hull , Wind tunnel Wing finite span tip tip vortex Wingspan Z Zero lift angle see Angle of attack, zero lift j 661 j