1. Trang chủ
  2. » Luận Văn - Báo Cáo

Báo cáo nghiên cứu khoa học " Thử nghiệm dự báo lượng mưa ngày bằng phương pháp dùng mạng thần kinh nhân tạo hiệu chỉnh sản phẩm mô hình số " ppt

10 606 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 456,48 KB

Nội dung

Tạp chí Khoa học đhqghn, KHTN & CN, T.xxII, Số 1PT., 2006 Thử nghiệm dự báo lợng ma ngày bằng phơng pháp dùng mạng thần kinh nhân tạo hiệu chỉnh sản phẩm hình số Hồ Thị Minh Hà, Nguyễn Hớng Điền Khoa Khí tợng-Thuỷ văn và Hải dơng học Trờng Đại học Khoa học Tự nhiên, ĐHQG Hà Nội 1. Mở đầu Trên thế giới có rất nhiều nhà khí tợng đã quan tâm tới mạng thần kinh nhân tạo (MTKNT) vì nó có khả năng học và xử lý tính phi tuyến của các quá trình biến đổi phức tạp mà các phơng pháp dự báo khác không thực hiện đợc. MTKNT đã đợc ứng dụng trong rất nhiều lĩnh vực khoa học nh điều khiển tự động, nhận dạng dấu vân tay, và cũng đợc các nhà khí tợng sử dụng trong dự báo thời tiết, khí hậu. Có thể kể ra một số công trình nghiên cứu đã sử dụng MTKNT nh dự báo giáng thuỷ hạn dài ở California, hình hoá ôzôn, dự báo ma đá nguy hiểm, dự báo giáng thủy hạn ngắn, Tuy nhiên, trong nớc mới chỉ có rất ít các nghiên cứu về lĩnh vực này và cha có công trình nào đợc áp dụng vào thực tiễn. ở đây chúng tôi sử dụng MTKNT để thử nghiệm hiệu chỉnh sản phẩm của hình số, cụ thể là lợng ma của hình phân giải cao HRM, theo số liệu quan trắc trong 3 tháng mùa ma (6, 7, 8) năm 2004 nhằm nâng cao chất lợng của sản phẩm dự báo số. Trớc hết ta sẽ xem xét cấu trúc và hoạt động của một mạng thần kinh đơn giản cũng nh phơng pháp học giảm gradient của MTKNT, sau đó sẽ tiến hành hiệu chỉnh sản phẩm của hình số và đánh giá kết quả. 2. Khái niệm về MTKNT và phơng pháp học giảm gradient 2.1. Cấu trúc và hoạt động của MTKNT Tổng có trọn g số của các giá trị đầu vào Giá trị đầu vào 1 Giá trị đầu vào n Hàm truyền (a) (b) Hình 1. đồ mạng thần kinh sinh học (a) và cấu trúc của MTKNT một nút ẩn (b). - Mạng thần kinh sinh học bao gồm nhánh thần kinh (dendrites), tế bào thần kinh (cell body), trục thần kinh (axon) và các xung thần kinh (electrical spike) tơng ứng với 3 phần chính bao gồm đầu vào, lớp ẩn và kết xuất của MTKNT. 1 Hồ Thị Minh Hà, Nguyễn Hớng Điền 2 - Đầu vào của MTKNT bao gồm N giá trị x i và các trọng số tơng ứng. Kết quả lấy tổng có trọng số của các x ij a i sẽ đợc nhập vào lớp ẩn : 1 n j oi i ua xa = =+ ij (1) - Lớp ẩn bao gồm hàm truyền, có thể là hàm sigma, hàm tang-hypebol,Ngời ta thờng sử dụng hàm sigma có dạng: () () 1 1exp x x = (2) + Thay giá trị của u vào hàm truyền sẽ đợc đầu ra của lớp ẩn, ký hiệu là y j j (j=1, , H). - Các giá trị đầu ra của lớp ẩn là đầu vào của kết xuất, thực hiện tơng tự nh đối với lớp ẩn đợc giá trị kết xuất, ký hiệu là z k (k = 1, , K). - Kết xuất đích mà ta muốn mạng học đợc là các giá trị t k (k = 1, , m). x i = += n i ijioj axau 1 ( ) jj uy = y j = += h j jkjok bybz 1 jk b ij a Hình 2. Quá trình lan truyền tiến - Một quá trình đi từ đầu vào, qua lớp ẩn và đến kết xuất là một quá trình lan truyền tiến (feed-forward) của mạng (Hình 2). Quá trình này cũng tơng tự nh quá trình nhận, xử lý thông tin và truyền thông tin đến não bộ của một tế bào thần kinh sinh học. 2.2. Phơng pháp học giảm gradient (giảm dốc nhất) Bản chất của phơng pháp này là cực tiểu hoá hàm lỗi (sai số trung bình bình phơng) giữa kết xuất z k và kết xuất đích t k . Hàm lỗi E là hàm của trọng số: () () = = m k kk ztE 1 2 2 1 r (3) với r là vectơ các trọng số, ứng với mỗi vectơ r ta có một giá trị sai số và các giá trị này lập thành một mặt lỗi trong không gian. Để dễ hình dung ta giả sử có 2 trọng số w 1 và w 2 và ta có thể biểu diễn hàm E là một mặt lỗi theo 2 biến này. Hình 3. Mặt lỗi w 1 w 2 E Thử nghiệm dự báo lợng ma ngày bằng phơng pháp 3 Mục tiêu của mạng là tìm đợc điểm trũng nhất trên mặt lỗi, nơi đó z k và t k gần nhau nhất. Ban đầu, khi chọn một cặp trọng số bất kỳ ta đợc một điểm trên mặt lỗi và mạng phải đi theo một đờng nào đó để tìm đợc điểm trũng nhất. Hớng đi của mạng qua từng bớc là hớng làm giảm sai số của bớc trớc nó. Biểu diễn toán học của quá trình cực tiểu hoá sai số đợc trình bày dới dây. Thiết kế một MTKNT gồm đầu vào bao gồm n mẫu, mỗi mẫu gồm các giá trị input x i (i=1 N), lớp ẩn gồm các nút y j (j=1 H) và kết xuất là các giá trị đích t k (k=1 K). Ký hiệu lại hàm truyền sigma là g(x): () () x xg + = exp1 1 (4) x 1 x 2 x N a 0 a 11 a 22 a 1H a N2 y 1 y 2 y H b 0 b 11 b 21 b 1K b H1 b 2k u 1 u 2 u H v 1 v K z 1 z K t 1 t K g(u j ) g(v k ) Đầu vào Lớp ẩn đầu ra đích Hình 4: Các thành phần chủ yếu của một mẫu của MTKNT. Đối với mỗi mẫu, trớc hết ta tính tổng trọng số các giá trị đầu vào: (5) = += N i iijj xaau 1 0 . Hàm truyền sigma đợc áp dụng cho lớp ẩn: () j jj u ugy 1 + == exp1 )( ) (6) Lấy tổng trọng số các nút ẩn y j : (7) = += H j jjkkk ybbv 1 0 . áp dụng hàm truyền sigma cho lớp xuất: ( k kk v vgz + == exp1 1 )( (8) Bớc (8) đợc thực hiện nếu nh giá trị đích là biến nhị phân. Nếu là các giá trị thực thì z k đợc gán trực tiếp bằng v k tơng ứng. Sai số tổng cộng của mỗi mẫu là: Hồ Thị Minh Hà, Nguyễn Hớng Điền 4 = = K k kk tzE 1 2 )( 2 1 (9) Để sai số này đạt cực tiểu thì đạo hàm của E theo các trọng số phải tiến dần đến 0. Ta tính đạo hàm riêng của E theo từng trọng số. Trớc hết là theo trọng số của lớp xuất: jk k k k kjk b v v z z E b E = , (10) trong đó kk k tz z E = (11) )1.( kk k k zz v z = (12) và j jk k y b v = (13) Khi đó: )).(1.(. kkkkj jk tzzzy b E = (14) Đặt: )).(1.( kkkkk tzzzp = (15) Vậy kj jk py b E .= (16) Tiếp theo là đạo hàm theo trọng số của lớp ẩn: ij i i j K k jk k k k kij i i j jij a u u y b v v z z E a u u y y E a E = = = 1 (17) Sử dụng phơng trình (16) ta đợc: ij i i j K k jkk ij a u u y bp a E = = 1 , (18) trong đó )1.( jj i j yy u y = (19) và i ij i x a u = (20) Vậy ijj K k jkk ij xyybp a E ).1.(. 1 = = (21) Thử nghiệm dự báo lợng ma ngày bằng phơng pháp 5 Nếu g(x) là hàm hybepol hay tang hypebol thì đạo hàm của E theo các trọng số sẽ khác. Các trọng số a ij và b jk đợc cập nhật sao cho gradient tổng cộng của sai số theo mọi trọng số trên tất cả các mẫu giảm đi. Gọi d là tổng gradient sai số theo mọi trọng số (ký hiệu chung là ) của bớc trớc nó: i n i E d = = 1 (22) với / E là đạo hàm riêng tổng cộng của E theo trọng số của mẫu thứ i, n là số lợng mẫu. Hớng giảm dốc nhất là hớng ngợc lại của hớng d. Nh vậy, mỗi trọng số sau một bớc sẽ đợc cập nhật mới: + = + kk 1 (23) với: d. = (24) trong đó là hệ số học, là hệ số thực nghiệm do ngời sử dụng tự chọn, ở đây chọn hệ số học 05.0= . Theo dõi sự biến thiên của sai số E theo thời gian đến khi E giảm ít hoặc hầu nh không giảm nữa thì dừng lại và chọn số thế hệ luyện phù hợp. Quá trình luyện đợc thực hiện nhiều lần để tránh rơi vào các cực tiểu địa phơng trên mặt lỗi hay còn gọi là bị rơi vào bẫy. Nh vậy, trên lý thuyết MTKNT có thể tìm đợc sai số cực tiểu, có thể bằng 0 và kết xuất sẽ hoàn toàn trùng khớp với kết xuất đích. Nhng có một số vấn đề làm cho MTKNT không tìm đến đợc điểm trũng nhất của mặt lỗi. Việc học của MTKNT hoàn toàn độc lập với con ngời, con ngời không tác động đến bất cứ một hoạt động nào của nó nhng việc chọn số nút, số lớp ẩn, số thế hệ quá nhiều hoặc quá ít lại có thể làm cho MTKNT không tìm đợc sai số cực tiểu. Ngoài ra mạng còn thờng gặp phải một vấn đề nữa là vấn đề quá khớp. Khi kiểm nghiệm cho thấy đối với tập số liệu luyện, sai số rất nhỏ nhng với tập số liệu độc lập dùng để đánh giá thì sai số lại tăng lên. Điều này phần lớn là do mạng đã luyện với quá nhiều thế hệ. Những vấn đề này chỉ có thể hạn chế đợc nhờ việc luyện nhiều lần và lấy tổ hợp các kết quả nhận đợc hoặc tiến hành kiểm nghiệm chéo (không trình bày chi tiết ở đây). Sau đây sẽ sử dụng MTKNT để thử nghiệm hiệu chỉnh cho lợng ma dự báo của hình phân giải cao HRM. 3. Thử nghiệm hiệu chỉnh lợng ma dự báo của hình HRM 3.1. Số liệu sử dụng - Số liệu bao gồm các giá trị lợng ma ngày dự báo trớc 24h bởi hình HRM với độ phân giải ngang 14km và 31 mực thẳng đứng, đợc nội suy về 314 trạm trên khu vực Việt Nam và lợng ma quan trắc tại các trạm đó trong thời gian từ tháng 6 đến tháng 8 năm 2004. - Hai tập số liệu này đợc xử lý loại bỏ những ngày không đủ số liệu quan trắc hoặc dự báo. Sau khi luyện mạng xong sẽ phục hồi các vị trí thiếu giá trị bằng 9999 và đánh giá chất lợng dự báo theo các chỉ số, chủ yếu là lợng ma trung bình ngày, sai số trung bình toàn phơng (RMSE), sai số hệ thống (BIAS) và độ lệch tuyệt đối trung Hồ Thị Minh Hà, Nguyễn Hớng Điền 6 bình (MAE) cho từng trạm, từng vùng (Bắc Bộ, Trung Bộ, Nam Bộ) và toàn bộ Việt Nam. 3.2. Chạy hình Phần xử lý số liệu đầu vào, số liệu đầu ra đợc thực hiện bằng lập trình Fortran trên hệ điều hành Linux. Phần luyện mạng, kiểm nghiệm và hiển thị đợc thực hiện nhờ phần mềm Matlab. a/ Phần luyện mạng: Số liệu đầu vào (input) của mạng là chuỗi giá trị lợng ma ngày dự báo đã đợc nội suy về 314 trạm trên Việt Nam. Đích cần học là các giá trị ma quan trắc trên các trạm tơng ứng. Mạng đợc thiết kế bao gồm 2 lớp ẩn và 1 lớp xuất. Lớp ẩn thứ nhất có 3 nút ẩn, lớp thứ 2 có 5 nút ẩn, số thế hệ học là 300 thế hệ. Số thế hệ này đợc chọn sau một vài lần luyện mạng. Các bộ trọng số tại 2 lớp ẩn và 1 lớp xuất đợc lu lại để kiểm nghiệm. b/ Phần tái tạo, kiểm nghiệm và đánh giá: - Tái tạo: Nhân bộ trọng số với chính số liệu input đợc đa vào mạng học, kết quả so sánh với đích học xem mức độ trùng khớp đợc bao nhiêu. - Kiểm nghiệm: Nhân bộ trọng số ở trên với chuỗi dự báo của tập số liệu kiểm nghiệm, kết quả so sánh với chuỗi quan trắc của tập số liệu kiểm nghiệm. - Đánh giá: Hiển thị giá trị ma trung bình theo thời gian cho 314 trạm đối với cặp số liệu input-tái tạo và input-kiểm nghiệm. Tính các chỉ số RMSE, BIAS, MAE đối với quá trình luyện và quá trình kiểm nghiệm. N 2 ii i1 1 RMSE (fcst obs ) N = = ; N i i1 1 MAE fcst obs N = = i ; N ii i1 1 BIAS (fcst obs ) N = = trong đó N là số ngày của chuỗi, fcst i là dự báo thứ i, obs i là quan trắc thứ i tơng ứng. 4. Kết quả thử nghiệm Sau đây là một số kết quả dự báo lợng ma ngày bằng phơng pháp dùng MTKNT hiệu chỉnh sản phẩm của hình HRM. Số liệu luyện và dự báo bao gồm cả 314 trạm trên Việt Nam sau đó tách ra làm 3 chuỗi gồm 159 trạm trên Bắc Bộ (19.5-24 độ Bắc, 100-110 độ Đông), 95 trạm trên Trung Bộ (12-19.5 độ Bắc, 100-110 độ Đông) và 57 trạm trên Nam Bộ (7-12 độ Bắc, 100-110 độ Đông), loại ra 3 trạm nằm ngoài đảo và trên nớc Lào. Trên mỗi hình vẽ biểu diễn lợng ma ngày trung bình theo thời gian của các trạm trên từng khu vực, đờng chấm chấm là số liệu dự báo 24h của HRM, đờng liền Thử nghiệm dự báo lợng ma ngày bằng phơng pháp 7 nét có dấu hoa thị là số liệu đợc hiệu chỉnh bởi MTKNT và đờng liền nét là số liệu quan trắc tơng ứng. Hình 5. Lợng ma ngày (mm/ngày) trung bình tháng 6 và tháng 7 của Bắc bộ, tập số liệu input và tái tạo Hình 6. Lợng ma ngày (mm/ngày) trung bình tháng 8 của Bắc bộ, tập số liệu input và kiểm nghiệm Hình 7. Lợng ma ngày (mm/ngày) trung bình tháng 6 và tháng 7 của Trung bộ, tập số liệu input và tái tạo Hå ThÞ Minh Hµ, NguyÔn H−íng §iÒn 8 H×nh 8. L−îng m−a ngµy (mm/ngµy) trung b×nh th¸ng 8 cña Trung bé, tËp sè liÖu input vµ kiÓm nghiÖm H×nh 9. L−îng m−a ngµy (mm/ngµy) trung b×nh th¸ng 6 vµ th¸ng 7 cña Nam bé, tËp sè liÖu input vµ t¸i t¹o H×nh 10: L−îng m−a ngµy (mm/ngµy) trung b×nh th¸ng 8 cña Nam bé, tËp sè liÖu input vµ kiÓm nghiÖm Thử nghiệm dự báo lợng ma ngày bằng phơng pháp 9 Bảng 1: Đánh giá sai số tổng quát của quá trình luyện mạng và quá trình kiểm nghiệm BIAS (mm/ngày) MAE (mm/ngày) RMSE (mm/ngày) Trung bình dự báo (mm/ngày) Trung bình quan trắc (mm/ngày) HRM 6.585 7.547 9.835 13.654 Việt Nam MTKNT 0.002 2.710 3.563 7.071 7.069 HRM 9.692 10.265 12.516 17.872 Bắc Bộ MTKNT 0.276 2.577 3.609 8.457 8.180 HRM 3.337 4.721 6.065 9.014 Trung Bộ MTKNT -0.288 2.840 3.456 5.390 5.678 HRM 3.445 4.843 5.759 9.881 Luyện (06- 07/2004) Nam Bộ MTKNT -0.341 2.912 3.666 6.090 6.432 HRM 6.179 7.663 9.884 13.898 Việt Nam MTKNT -0.499 3.007 4.058 7.220 7.719 HRM 10.306 10.704 12.677 20.265 Bắc Bộ MTKNT -0.673 2.823 3.939 9.287 9.959 HRM 0.980 4.153 5.384 5.942 Trung Bộ MTKNT -0.518 3.454 4.462 4.444 4.961 HRM 3.469 5.249 6.355 9.730 Kiểm nghiệm (08/2004) Nam Bộ MTKNT -0.077 2.824 3.744 6.184 6.261 Từ hình 5 đến hình 10 và bảng 1 ta thấy MTKNT đã hiệu chỉnh sản phẩm của HRM về gần với quan trắc hơn, sai số ở tập luyện nhỏ hơn sai số trên tập kiểm nghiệm. Nhìn chung, tính trung bình cho cả chuỗi thời gian (2 tháng đối với tập luyện và 1 tháng đối với tập kiểm nghiệm) thì các đờng biểu diễn lợng ma trung bình theo thời gian tại 314 trạm của MTKNT và quan trắc khá sát nhau, trong khi đó sản phẩm của HRM thờng cho lợng ma lớn hơn nhiều so với quan trắc. Điều này thể hiện rõ hơn trong các chỉ sốbảng 1. Tính cho tất cả các ngày và tất cả các trạm thì lợng ma dự báo trung bình của HRM khoảng hơn 13mm/ngày trong khi lợng ma trung bình của quan trắc và MTKNT chỉ khoảng 7-8mm/ngày. Do đó, các sai số RMSE, BIAS và MAE của MTKNT nhỏ hơn hẳn so với HRM. Tuy nhiên, những ngày ma lớn trong tập số liệu luyện rất ít so với số ngày không ma hoặc ma rất nhỏ, nên MTKNT học đợc ít thông tin về ma lớn. Vì vậy, MTKNT không hiệu chỉnh tốt đối với những ngày có ma lớn. Nh thấy trên hình 5 đến hình 10, tại một vài trạm thờng có ma lớn trong 3 tháng mùa hè năm 2004, đờng phỏng của MTKNT không gần với đờng quan trắc và chỉ số BIAS có giá trị âm, trong khi đó dự báo của HRM lại nắm bắt tốt. 5. Kết luận - MTKNT đã hiệu chỉnh sản phẩm của HRM về gần với quan trắc hơn, sai số ở tập luyện nhỏ hơn sai số trên tập kiểm nghiệm. - MTKNT đã thiết lập có thể hiệu chỉnh tốt đối với những số liệu ma vừa và ma nhỏ trong khoảng 5-15mm, cha hiệu chỉnh tốt đối với những ngày ma lớn và những trạm thờng có ma lớn. Hồ Thị Minh Hà, Nguyễn Hớng Điền 10 Để cải tiến kết quả hiệu chỉnh cần thay đổi một số tham số của mạng nh hệ số học, số lớp ẩn, số nút ẩn của mỗi lớp ẩn và luyện mạng nhiều lần để chọn đợc một MTKNT phù hợp nhất. Phức tạp hơn, ta có thể thiết lập nên MTKNT với mục tiêu học không chỉ là cực tiểu hoá sai số trung bình bình phơng mà còn tăng thêm trọng số đối với những quan trắc đích có giá trị lớn để đa thêm thông tin về những ngày ma lớn cho mạng học. Sau khi chọn đợc mạng phù hợp nhất ta có thể lu trữ lại mạng để dùng cho các phỏng tiếp sau mà không cần luyện lại mạng. Bài báo đợc hoàn thành với sự hỗ trợ kinh phí của đề tài NCCB 733104. Tài liệu tham khảo 1. Caren Marzban and Arthur Witt, A Bayesian Neural Network for Severe-Hail Size Prediction, Weather and Forecasting, Volume 16, 2000, p600-610. 2. David Silverman and John A. Dracup, Artificial Neural Networks and Long-Range Precipitation Prediction in California, Monthly weather review, JANUARY 2000, p.57-66. 3. Narasimhan et al., Ozone Modeling Using Neural Networks, Monthly weather review, MARCH 2000, p291-296. 4. Robert J. Kuligowski and Ana P. Barros, Experiments in Short-Term Pricipitation Forecasting Using Artifical Neural Networks, Monthly weather review, 2000, Volume 126, p.470-482. 5. Tom M. Mitchell, Machine Learning, Chapter 4, 1996, p81-127. VNU. JOURNAL OF SCIENCE, Nat., Sci., & Tech., T.xXII, n 0 1AP., 2006 An Experiment in Daily Rainfall Forecasting Using Artificial Neural Network to Adjust Numerical Model Output Ho Thi Minh Ha, Nguyen Huong Dien Department of Hydro-Meteorology & Oceanography College of Science, VNU Artifical Neural Network (ANN) is one kind of Decision Support Systems. It has the similar structure and behaviours to that of biological neuron. It can learn and simulate the information as a brain through a learning course. The most common learning method is folowing the gradient descent rule. In this paper its used for HRM rainfall output adjustment. The input data is rainfall field predicted by HRM (with the horizontal resolution14km and 31 vertical levels) and the observation data, respectively in the period of time between 01th June 2004 and 31th August 2004 at 314 stations in Vietnam. Data is divided into 2 parts. One part is used for neural network learning and the other one for prediction and test. The average rainfall, root mean square error (RMSE), mean absolute error (MAE) and mean bias error (BIAS) are the indices used to verify the results. All the indices show that the rainfall adjusted by ANN is closer to observation than that of HRM output in general. In particle, however the rainfall of ANN is smaller than that of HRM in the heavy rainfall days. The best results are get in the North of Vietnam and theyre very not good in the South of Vietnam. The reason is maybe the lack of station in this area. . Tạp chí Khoa học đhqghn, KHTN & CN, T.xxII, Số 1PT., 2006 Thử nghiệm dự báo lợng ma ngày bằng phơng pháp dùng mạng thần kinh nhân tạo hiệu chỉnh sản phẩm mô hình số Hồ Thị Minh. là số ngày của chuỗi, fcst i là dự báo thứ i, obs i là quan trắc thứ i tơng ứng. 4. Kết quả thử nghiệm Sau đây là một số kết quả dự báo lợng ma ngày bằng phơng pháp dùng MTKNT hiệu chỉnh sản. kiểm nghiệm chéo (không trình bày chi tiết ở đây). Sau đây sẽ sử dụng MTKNT để thử nghiệm hiệu chỉnh cho lợng ma dự báo của mô hình phân giải cao HRM. 3. Thử nghiệm hiệu chỉnh lợng ma dự báo

Ngày đăng: 20/06/2014, 00:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN