1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Đồ án hcmute) fuji residence

142 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 142
Dung lượng 15,54 MB

Nội dung

MINISTRY OF EDUCATION AND TRAINING HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION GRADUATION THESIS FACULTY OF CIVIL ENGINEERING FUJI RESIDENCE LECTURER: Ph.D NGUYEN VAN HAU STUDENT: HOANG THE PHONG SKL 010301 Ho Chi Minh City, Feb 2023 HO CHI MINH UNIVERSITY OF TECHNOLOGY AND EDUCATION FALCUTY OF CIVIL ENGINEERING GRADUATED PROJECT Building: FUJI RESIDENCE  STUDENT : Hoàng Thế Phong  ID : 18149285  ADVISOR : PhD Nguyễn Văn Hậu  SEMESTER : (2022 – 2023) Graduated Project Advisor: PhD Nguyen Van Hau MISSON OF GRADUATED PROJECT Student : Hoàng Thế Phong Department : Faculty of civil engineering Advisor : PhD Nguyễn Văn Hậu Project : FUJI RESIDENCE Date of submit : 04/02/2023 ID :18149285 Summary of contents  Input data  Architecture profile  Geological profile  Procession :  Architectural drawings  Modelling, analyzing beam (story 19) and typical floor (Beam-slab solution)  Modelling, analyzing and designing frame along grid (shear wall and core)  Modelling, analyzing and designing foundation of bored pile  Output data  01 main document and 01 appendix  01 set of A1 drawings (04 architectures and 16 structures)  Date of issue : 03/09/2022  Date of finish : 31/01/2023 Student: Hoang The Phong - 18149285 Graduated Project Advisor: PhD Nguyen Van Hau ACKNOWLEDGEMENT It’s my pleasure being a part of faculty of civil engineering in particular and the Hồ Chí Minh university of technology and education in general The project is the results of the past years of studying and with the help of teachers and friends in faculty, especially PhD Nguyen Van Hau, who has devoted himself to guild me to accomplish this end of lession With limited experience and knowledge, making mistakes is inevitable I hope you can give some advice so that I can improve my knowledge Finally, my best wishes to all teachers I wish you good health, peace and success in your work Student: Hoang The Phong - 18149285 Graduated Project Advisor: PhD Nguyen Van Hau EVALUATION OF ADVISOR Student : Hoàng Thế Phong Department : Faculty of civil engineering Project : FUJI RESIDENCE ID :18149257 EVALUATION Volumn of content Advantage : Disadvantage : Allow to dissertate ? Grade : Mark : …………… (By text: ………………………… ) TP Hồ Chí Minh, date … month … year 2023 Advisor PhD Nguyen Van Hau Student: Hoang The Phong - 18149285 Graduated Project Advisor: PhD Nguyen Van Hau EVALUATION OF DISSERTATE COMMITTEE Student : Hoàng Thế Phong ID :18149257 Department : Faculty of civil engineering Project : FUJI RESIDENCE EVALUATION Volumn of content Advantage : Disadvantage : Allow to dissertate ? Grade : Mark : …………… (By text: ………………………… ) TP Hồ Chí Minh, date … month … year 2023 Dissertate committee PhD Bui Pham Duc Tuong Student: Hoang The Phong - 18149285 Graduated Project Advisor: PhD Nguyen Van Hau TABLE OF CONTENTS CHAPTER OVERVIEW OF BUILDING’S ARCHITECTURE 1.1 Project introduction 1.1.1 Purpose of construction 1.1.2 Location 1.1.3 Climate condition 1.1.4 Building scale 1.2 Technical solution 1.2.1 Electric systrem 1.2.2 Water supply system 1.2.3 Fire Protection System 1.2.4 Lighting system 1.2.5 Ventilation system 1.2.6 Lightning protection system CHAPTER OVERVIEW OF BUILDING’S STRUCTURE 2.1 Basic design 2.1.1 Standard and regulation 2.1.2 Calculation principles 2.1.3 Software used 2.1.4 Material used 2.1.5 Concrete cover 2.2 Structure solutions 2.2.1 Vertical load 2.2.2 Structure solution of lateral load Student: Hoang The Phong - 18149285 Graduated Project Advisor: PhD Nguyen Van Hau 2.2.3 Estimated dimension of cross section 10 CHAPTER STRUCTURAL LOAD 12 3.1 Static load 12 3.1.1 Superimposed dead load (SDL) 12 3.1.2 Masonry wall load 13 3.2 Live load 13 3.3 Wind load 14 3.3.1 Static wind load 14 3.3.2 Dynamic wind load 16 3.3.3 Result of dynamic wind load 20 3.4 Seismic load 27 3.4.1 Oscillation of seismic load analysis 27 3.4.2 Overview of response spectra method 28 3.4.3 Parameters to calculate seismic load by response spectra method 29 3.5 Load combination 32 3.5.1 Load patterns 32 3.5.2 Load cases 32 3.5.3 Load combinations 33 CHAPTER CHECKING SECOND LIMIT STATE (SLS) 34 4.1 Checking anti overturning 34 4.2 Checking peak acceleration 34 4.3 Checking peak displacement 35 4.4 Checking drifts of building 36 4.5 Checking P-DELTA effect 37 Student: Hoang The Phong - 18149285 Graduated Project Advisor: PhD Nguyen Van Hau CHAPTER DESIGNING TYPICAL STAIRCASE 40 5.1 Structure design of stair 40 5.2 Loads and load combinations 41 5.2.1 Static load on landing 41 5.2.2 Static load on waist slab 41 5.2.3 Live load on stair 42 5.3 Internal force results 42 5.4 Stair’s reinforcement calculatiion 43 5.5 Landing beam calculation 43 5.5.1 Loads on beam 200 mm x 300mm 43 5.5.2 Internal force 44 CHAPTER TYPICAL FLOOR DESIGN 46 6.1 Load assign 46 6.2 Model analysis, interal force output 46 6.2.1 Reinforcement calculation 49 6.2.2 Checking crack width 50 6.2.3 Checking deflection with crack 54 CHAPTER BEAM – WALL – CORE DESIGN 57 7.1 Design beam on typical floor 57 7.1.1 Reinforcement calculation 59 7.1.2 Result of beam reinforcement 64 7.2 Shear wall design 68 7.2.1 Reinforcement calculation 68 7.3 Core wall design 72 Student: Hoang The Phong - 18149285 Graduated Project Advisor: PhD Nguyen Van Hau 7.3.1 Defination and theory of calculating core wall 72 7.3.2 Calculation of typical element 72 CHAPTER FOUNDATION DESIGN 78 8.1 Geological feature 78 8.2 Method of foundation design 78 8.3 Load capacity of pile 84 8.3.1 Pile parameters 84 8.3.2 Load bearing capacity according to material 85 8.3.3 Load bearing capacity according to physical-mechanical indicators 86 8.3.4 Load bearing capacity according to strenght indicators 87 8.3.5 Load bearing capacity according to SPT indicators 90 8.3.6 Load bearing capacity of bore pile D800 91 8.3.7 Settlement of single pile 91 8.4 Design foundation M1 93 8.4.1 Internal force of M1 93 8.4.2 Reaction of pile 93 8.4.3 Check the stability of ground 94 8.4.4 Check settlement 97 8.4.5 Check punching shear 99 8.4.6 Reinforcement calculating 99 8.5 Design foundation M2 101 8.5.1 Internal force of M2 101 8.5.2 Reaction of pile 101 8.5.3 Check the stability of ground 102 Student: Hoang The Phong - 18149285 Graduated Project Advisor: PhD Nguyen Van Hau Edge Leng th (m) xi (m) Li x i (m2) yi Li y i Ix Iy Parallel to L2 (QDX) 0.31 1.14 0.36 2.87 0.90 0.61 0.003 X L2 (QDY 0.18 1.14 0.21 2.87 0.52 0.0005 0.09 Y L3 1.24 1.85 2.29 3.03 3.74 2.99 0.16 X L4 (QDX) 0.31 2.56 0.80 2.87 0.90 0.61 0.00 X L4 (QDY 0.18 2.56 0.46 2.87 0.52 0.00 0.09 Y L5 2.71 2.65 7.19 1.36 3.68 1.66 1.74 Y L6 1.60 1.85 2.97 0.00 0.00 3.46 0.34 X Sum 9.25 - 17.12 - 13.94 11.00 4.16 -  M tty F M ttx 10860.7 5.35 131.03       0.763  Fb ,u M bx ,u M by,u 13949.2 11606.25 8551.56  Meet punching shear condition 8.5.6 Reinforcement calculating Material used: concrete B30, reinforcement CB400-V, Concrete cover: a0 = 50 (mm) Assume that  Top side: agt = 70 (mm), h0 = h – a = 1500 – 70 = 1430 (mm)  Bottom side: agt = 150 (mm), h0 = h – a = 1500 – 150 = 1350 (mm) To calculate reinforcement, apply the formula in 2.1.4.2: Student: Hoàng Thế Phong - 18149285 107 Graduated Project Advisor: PhD Nguyen Van Hau Figure 8-15 Moment strip of M2 Bảng Result of calculating reinforcement Moment (kN.m/m) h0 (m) m  Bottom X 1.35 0.083 Top X 327 1.43 Bottom Y 1,059 Top Y 424 Location A stt Ø a Asch  (mm /m) mm mm (mm2/m) 0.087 5672.92 28 100 6157.52 0.46 0.010 0.011 730.63 16 200 1005.31 0.07 1.35 0.038 0.039 2540.45 25 200 2454.37 0.18 1.43 0.014 0.014 948.35 16 200 1005.31 0.07 8.6 Design foundation M3 8.6.1 Internal force Student: Hoàng Thế Phong - 18149285 108 Graduated Project Advisor: PhD Nguyen Van Hau Figure 8-16 Estimated dimension of foundation M1 Table 8-15 Internal force Combo Ntt, max (kN) Mx, tư (kNm) My, tư (kNm) Comb1-TT -13312.9948 -10.7518 28.5197 Combo Ntt, tư (kN) Mx,tư(kNm) My, max (kNm) TT-TH12 -11688.6024 -42.1858 872.3519 8.6.2 Reaction of pile Figure 8-17 Fz max (TH1) Figure 8-18 Fz (TH2)  Pmax  3477 kN  Rc , d  4174.55 kN   Pmin  2828 kN   Pile meets load capacity 8.6.3 Check the stability of ground  Ld  3.7 (m) Bd  3.7 (m) is length and width of foundation  Lc  41.65 (m) woking height of pile Leq  ( Ld  d )  Lc  tan  tb /    3.7  0.8    39.15  tan  20.005 /   9.75 (m) Beq  ( B d  d )  Lc  tan  tb /    3.7  0.8    39.15  tan  20.005 /   9.75 (m) Feq  Leq  Beq  9.75  9.75  95.10 (m2) H eq  Lc  D f  39.15  8.35  47.5 (m) Student: Hoàng Thế Phong - 18149285 109 Graduated Project Advisor: PhD Nguyen Van Hau Weight of equivalent foundation includes the weight of foundation, piles, and soil that the pile goes through  Foundation, piles: Pcoc+dai =[Vcoc +Vdai ]×γ be tong =(4  39.15  0.503  3.7  3.7  1.5)  25  2481.27 (kN)  Soil: Pdat  Feq  H eq   sat ,tb  95.10  47.5  381  43944.35 (kN) 39  W eq =Pcoc+dai +Pdat = 2481.27+ 43944.35= 46425.61 (kN) Load applied on equivalent foundation: N tc 13312.99   11576.5 (kN) 1.15 1.15 N tc  tt M tc x M y 28.52 tc M xtt 10.75   24.80 (kNm)    9.35 (kNm); M y  1.15 1.15 1.15 1.15 Load applied at bottom of equivalent foundation: ex  M ytc N  Weq ex  tc max P   9.35  0.0004276 (m) 11576.5  46425.61 M xtc 24.80   0.0001612 tc N  Weq 11576.5  46425.61 N tc  Weq  6e y  6e    x   Feq Leq Beq   11576.5  46425.61   0.0004276  0.0001612   1     610.11 (kN/m ) 95.10 9.75 9.75   tc  Pmin  tc N tc  Weq  6ex 6e y      Feq Leq Beq   11576.5  46425.61   0.0004276  0.0001612   1     609.67 (kN/m ) 95.10 9.75 9.75   Ptbtc  tc tc Pmax  Pmin 610.11  609.67   609.89 (kN/m2) 2 Student: Hoàng Thế Phong - 18149285 110 Graduated Project Advisor: PhD Nguyen Van Hau Same way as combo 1, combo 12 is calculated: Ntc M tc x tc y M ex ey Pmtcax Pmtcin Ptbtc (kN) (kNm) (kNm) (m) (m) (kN/m2) (kN/m2) (kN/m2) 10164.00 36.68 758.57 0.0134 0.0006 600.19 589.90 595.04 Load-bearing capacity of ground at the bottom of the equivalent foundation block (same as foundation M1) RII   m1  m2  A  Beq   II  B  h   II'  D  cII   II  h0  k tc 1.2   0.65  9.75  9.79  3.59  47.5  9.73  6.42  7.12  9.79  7.84   1844.42 (kN) 1.1  Pmax  610.11 (kN )  1.2 RII  1.2  1844.42  2213.30(kN )   Ptb  609.89 (kN )  RII  1844.42 (kN )  P  609.67(kN )    Meet stability of ground 8.6.4 Check settlement calculation is similar to M1 foundation  Pgl  Ptb  o 'bt  609.89  500.67  123.50 (kN/m2), Table 8-16 Result of settlement Point 2z/b K0  gl (kPa)  bt' (kPa) 0.00 123.50 500.67 0.54 0.904 111.64 510.46 0.54 0.904 111.64 510.46 1.08 0.664 82.00 520.25 Sum P1i P2i e1i e1i Si(cm) (kPa) (kN/m ) 505.57 609.55 0.585 0.575 0.600 515.36 600.99 0.584 0.576 0.480 1.079 S i  1.079 (cm)  S   (cm)  Meet settlement condition Student: Hoàng Thế Phong - 18149285 111 Graduated Project Advisor: PhD Nguyen Van Hau 8.6.5 Check punching shear Height of footing hđ = 1.5 m, ho = 1.5 – 0.15 = 1.35 m Figure 8-19 Anti-punching zone Condition: M tty F M ttx   1 Fb,u M bx ,u M by,u In which:  F : punching force out of the anti zone F  Ntt 13313 k    13313(KN) nc k: number of piles out of the anti zone M ttx ; M tty : interal force of M3 Fb ,u  R bt  u  h  1.15  10   (1.6  3.55)  1.35  15990.75 (kN) (u is perimeter of anti punching zone) M bx,u  M by,u   R bt  I bx  h 1.15  103  17.54 1.43   16249.03 (kNm) y max 1.775 R bt  I by  h x max  1.15  103  5.23  1.43  10744.07 (kNm) 0.8 I bx ; I by : inertia moment of the edges of the anti-punching zone n n i 1 i 1 Ibx   Ixi (m3 ) ; Iby   Iyi (m3 )  Inertia moment that parallel to X axis: I xi  L xi  (y i  y ) (m ) ; Iyi  Student: Hoàng Thế Phong - 18149285 L2xi  Lxi  (xi  x0 )2 (m3 ) 12 112 Graduated Project  Advisor: PhD Nguyen Van Hau Inertia moment that parallel to Y axis: Ixi   L3yi  L yi  (yi  y0 )2 (m3 ) ; I yi  L yi  ( x i  x ) (m ) 12 Centroid of anti-punching zone: x0  L x L i i  i 19.06  1.85 (m) ; y  10.3 L y L i i i  19.06  1.85 (m) 10.3  Xmax  0.8 (m) : maximum distance from center to edge of anti-punching zone in  direction X Ymax  1.775 (m) : maximum distance from center to edge of anti-punching zone in direction Y Table 8-17 Inertia moment of edge of anti-punching zone Edge Length (m) xi (m) Li x i (m2) yi Li y i Ix Iy Parallel to L1 3.55 1.05 3.73 1.85 6.57 3.73 2.27 Y L2 1.60 1.85 2.96 3.63 5.80 5.04 0.34 X L3 3.55 2.65 9.41 1.85 6.57 3.73 2.27 Y L4 1.60 1.85 2.96 0.08 0.12 5.04 0.34 X Sum 10.30 - 19.06 - 19.06 17.54 5.23 -  M tty F M ttx 13313 10.75 28.52       0.836  Fb,u M bx ,u M by,u 15990.8 16249.03 10744.07  Meet punching shear condition 8.6.6 Reinforcement calculating Material used: concrete B30, reinforcement CB400-V, Concrete cover: a0 = 50 (mm) Assume that  Top side: agt = 70 (mm), h0 = h – a = 1500 – 70 = 1430 (mm)  Bottom side: agt = 150 (mm), h0 = h – a = 1500 – 150 = 1350 (mm) To calculate reinforcement, apply the formula in 2.1.4.2: Student: Hoàng Thế Phong - 18149285 113 Graduated Project Advisor: PhD Nguyen Van Hau Figure 8-20 Moment strip of M3 Bảng Result of calculating reinforcement Moment (kN.m/m) h0 (m) m  Bottom X 2,380.58 1.35 0.085 Top X 88.55 1.43 Bottom Y 1,174.24 Top Y 20.57 Location A stt Ø a Asch % (mm /m) mm mm (mm2/m) 0.089 5859.92 28 100 6157.52 0.46 0.003 0.003 196.86 16 200 1005.31 0.07 1.35 0.042 0.043 2822.01 28 200 3078.76 0.23 1.43 0.001 0.001 45.67 16 200 1005.31 0.07 8.7 Design foundation MLT 8.7.1 Internal force Figure 8-21 Estimated dimension of foundation M1 Student: Hoàng Thế Phong - 18149285 114 Graduated Project Advisor: PhD Nguyen Van Hau Table 8-18 Internal force Type Combo Ntt, max (kN) Mx, tư (kNm) My, tư (kNm) MLT Comb1-TT -47208.1199 -6398.2675 -3287.1099 8.7.2 Reaction of pile Figure 8-22 Reaction of pile cap  Pmax  4020.37 kN  Rc , d  4174.55 kN   Pmin  1969.11kN   Pile meets load capacity 8.7.3 Check the stability of ground  Ld  10.9 (m) Bd  6.1 (m) is length and width of foundation  Lc  36.45 (m) woking height of pile Leq  ( Ld  d )  Lc  tan  tb /   10.9  0.8    36.45  tan  20.005 /   16.48 (m) Beq  ( B d  d )  Lc  tan  tb /    6.1  0.8    36.45  tan  20.005 /   11.68 (m) Feq  Leq  Beq  16.48  11.68  192.47 (m2) H eq  Lc  D f  36.45  11.05  47.50 (m) Weight of equivalent foundation includes the weight of foundation, piles, and soil that the pile goes through  Foundation, piles: Pcoc+dai =[Vcoc +Vdai ]×γ be tong =(15  36.45  0.503  6.1  10.9  4.2)  25  13852.11 (kN)  Soil: Pdat  Feq  H eq   sat ,tb  192.47  47.5  9.73  88936.43 (kN) Student: Hoàng Thế Phong - 18149285 115 Graduated Project Advisor: PhD Nguyen Van Hau  W eq =Pcoc+dai +Pdat = 13852.11+ 88936.43 = 102788.54 (kN) Load applied on equivalent foundation: N tc  N tc 47208.12   41050.5 (kN) 1.15 1.15 tt M tc x M y 3287.1 tc M xtt 6398.27   2858.36 (kNm)    5563.71 (kNm); M y  1.15 1.15 1.15 1.15 Load applied at bottom of equivalent foundation: ex  ex  tc max P   tc N  Weq  2858.36  0.0199 (m) 41050.5  102788.54 M xtc 5563.71   0.0387 (m) tc N  Weq 41050.5  102788.54 N tc  Weq  6e y  6e    x   Feq Leq Beq   41050.5  102788.54   0.0199  0.0387   1     767.58 (kN/m ) 192.47 16.48 11.68   tc P M ytc N tc  Weq  6ex 6e y       Feq Leq Beq   41050.5  102788.54   0.0199  0.0387   1     727.07 (kN/m ) 192.47 16.48 11.68   Ptbtc  tc tc Pmax  Pmin 767.58  727.07   747.33 (kN/m2) 2 Load-bearing capacity of ground at the bottom of the equivalent foundation block (same as foundation M1) RII   m1  m2  A  Beq   II  B  h   II'  D  cII   II  h0  k tc 1.2   0.65  11.68  9.79  3.59  47.5  9.73  6.42  7.12  9.79  2.19   1829.13 (kN) 1.1  Pmax  767.58 (kN )  1.2 RII  1.2  1829.13  2038.60(kN )   Ptb  747.33 (kN )  RII  1829.13 (kN )  P  727.07(kN )    Meet stability of ground 8.7.4 Check settlement calculation is similar to M1 foundation Student: Hoàng Thế Phong - 18149285 116 Graduated Project  Advisor: PhD Nguyen Van Hau Pgl  Ptb  o 'bt  747.33  500.67  246.65 (kN/m2), Table 8-19 Result of settlement Point 2z/b K0  gl (kPa)  bt' P1i P2i (kPa) (kPa) (kN/m2) 505.57 0.000 1.000 246.65 500.67 0.328 0.980 241.60 510.46 0.328 0.980 241.60 510.46 0.656 0.893 220.31 520.25 0.656 0.893 220.31 520.25 0.984 0.799 197.08 530.05 0.984 0.799 197.08 530.05 1.311 0.678 167.33 539.84 1.311 0.678 167.33 539.84 1.639 0.578 142.57 549.63 1.639 0.578 142.57 549.63 1.967 0.463 114.20 559.42 1.967 0.463 114.20 559.42 2.295 0.396 97.67 569.21 e1i e2i Si(cm) 749.69 0.585 0.563 1.388 515.36 746.31 0.584 0.563 1.313 525.15 733.84 0.583 0.564 1.182 534.94 717.14 0.582 0.566 1.037 544.73 699.68 0.581 0.567 0.886 554.52 682.91 0.580 0.569 0.734 564.31 670.25 0.579 0.570 0.602 Sum 6.540 S  (cm)  S   (cm)  Meet settlement condition 8.7.5 Check punching shear Determine anti – punching zone Height of footing hđ = 4.2 m, ho = 4.2 – 0.15 = 4.05 m The resistance of shear force is 0.5 Rbt bh0 Student: Hoàng Thế Phong - 18149285 117 Graduated Project Advisor: PhD Nguyen Van Hau Q x ,max  2608.52 (kN)  0.51.1510  6.1 4.05  14205.38 (kN) Q y ,max  4992.91 (kN)  0.51.1510 10.9  4.05  25383.38 (kN) Figure 8-23 Anti-punching zone Piles are in the anti – punching zone, the footing is considered absolutely rigid Meet punching shear condition 8.7.6 Reinforcement calculating Material used: concrete B30, reinforcement CB400-V, Concrete cover: a0 = 50 (mm) Assume that  Top side: agt = 70 (mm), h0 = h – a = 4200 – 70 = 4130 (mm)  Bottom side: agt = 150 (mm), h0 = h – a = 4200 – 150 = 4050 (mm) To calculate reinforcement, apply the formula in 2.1.4.2: Student: Hoàng Thế Phong - 18149285 118 Graduated Project Advisor: PhD Nguyen Van Hau Figure 8-24 Moment strip from SAFE Bảng Result of calculating reinforcement Moment (kN.m/m) h0 (m) m  Bottom X 2185.82 4.05 0.009 Top X 2518.72 4.13 Bottom Y 7368.68 Top Y 3473.32 Location A stt Ø a Asch  (mm /m) mm mm (mm2/m) 0.009 1720.89 22 150 2534.22 0.06 0.010 0.010 1945.50 22 150 2534.22 0.06 4.05 0.029 0.030 5863.34 28 100 6157.52 0.15 4.13 0.013 0.013 2687.84 28 200 3078.76 0.07 Student: Hoàng Thế Phong - 18149285 119 Graduated Project Advisor: PhD Nguyen Van Hau BIBLIOGRAPHY TCVN 2737 - 1995: Tải trọng tác động – Tiêu chuẩn thiết kế Hà Nội : NXB Xây Dựng, 1996 TCVN 229 - 1999: Chỉ dẫn tính tốn thành phần động tải trọng gió theo TCVN 2737:1995 Hà Nội : NXB Xây Dựng, 1999 TCVN 5574 - 2018: Kết cấu bê tông cốt thép – Tiêu chuẩn thiết kế Hà Nội : NXB Xây Dựng, 2012 TCVN 198 - 1997: Nhà cao tầng – Thiết kế kết cấu bê tông cốt thép toàn khối Hà Nội : NXB Xây Dựng, 1999 TCXDVN 356 - 2005: Kết cấu bê tông bê tông cốt thép – Tiêu chuẩn thiết kế Hà Nội : Bộ Xây Dựng, 2005 TCXDVN 375 - 2006: Thiết kế cơng trình chịu động đất Hà Nội : Xây Dựng, 2006 TCVN 9386 - 2012: Thiết kế cơng trình chịu động đất – Tiêu chuẩn thiết kế Hà Nội : NXB Xây Dựng, 2012 TCVN 10304 - 2014: Móng cọc – Tiêu chuẩn thiết kế Hà Nội : NXB Xây Dựng, 2014 Cống, Nguyễn Đình Tính tốn thực hành cấu kiện BTCT Tập Hà Nội : NXB Xây dựng, 2009 10 — Tính tốn thực hành cấu kiện BTCT Tập Hà Nội : NXB Xây dựng, 2009 11 — Tính tốn tiết diện cột BTCT Hà Nội : NXB Xây dựng, 2006 Student: Hoàng Thế Phong - 18149285 120

Ngày đăng: 10/10/2023, 15:20