Nucleic Acids and Molecular Biology 30 Katsuhiko S Murakami Michael A. Trakselis Editors Nucleic Acid Polymerases Nucleic Acids and Molecular Biology Volume 30 Series Editor Janusz M Bujnicki International Institute of Molecular and Cell Biology Laboratory of Bioinformatics and Protein Engineering Trojdena 02-109 Warsaw Poland For further volumes: http://www.springer.com/series/881 ThiS is a FM Blank Page Katsuhiko S Murakami • Michael A Trakselis Editors Nucleic Acid Polymerases Editors Katsuhiko S Murakami Dept of Biochem and Mol Biology The Pennsylvania State University University Park Pennsylvania USA Michael A Trakselis Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania USA ISSN 0933-1891 ISSN 1869-2486 (electronic) ISBN 978-3-642-39795-0 ISBN 978-3-642-39796-7 (eBook) DOI 10.1007/978-3-642-39796-7 Springer Heidelberg New York Dordrecht London © Springer-Verlag Berlin Heidelberg 2014 This work is subject to copyright All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer Permissions for use may be obtained through RightsLink at the Copyright Clearance Center Violations are liable to prosecution under the respective Copyright Law The use of general descriptive names, registered names, trademarks, service marks, etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made The publisher makes no warranty, express or implied, with respect to the material contained herein Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface More than any other class of enzymes, nucleic acid polymerases are directly responsible for an overabundance of enzymatic, regulatory, and maintenance activities in the cell DNA polymerases accurately replicate copies of genomes in all forms of life as well as have specialized roles in DNA repair and immune response RNA polymerases are most noted for their active roles in controlling gene expression during transcription but can also be utilized in self-replicating ribozymes and viral replication Although the general sequence homology, structural architecture, and mechanism are conserved, they have evolved to incorporate deoxynucleotides (dNTPs) or ribonucleotides (rNTPs) explicitly Various nucleic acid polymerases have specificities for RNA or DNA templates, incorporate dNTPs or rNTPs, and can be template dependent or independent Here, we provide examples on the latest understanding of each class of nucleic acid polymerase, their structural and kinetic mechanisms, and their respective roles in the central dogma of life This book provides a catalog and description of the multitude of polymerases (both DNA and RNA) that contribute to genomic replication, maintenance, and gene expression Evolution has resulted in tremendously efficient enzymes capable of repeated extremely rapid syntheses that have captivated researchers’ interests for decades We are inspired by work that started over 60 years ago and is actively pursued today for a fundamental understanding of life, contributions to human health and disease, and current and future biotechnology applications Nucleic acid polymerases are fascinating on a number of levels, yet still continue to surprise us with novel modes of action revealed through ongoing and future studies described within this volume We wish to thank all the authors for their specific expertise and willingness to participate in this comprehensive review of nucleic acid polymerases We are also grateful to the many investigators before us (including our research mentors: Stephen Benkovic and Akira Ishihama) who began and continue this important v vi Preface line of research We believe this book will be useful for a wide range of researchers in both the early and later stages of their careers We would be thrilled if this volume becomes the go-to resource for nucleic acid polymerase structure, function, and mechanism for years to come Pittsburgh, PA University Park, PA Michael A Trakselis Katsuhiko S Murakami Contents Introduction to Nucleic Acid Polymerases: Families, Themes, and Mechanisms Michael A Trakselis and Katsuhiko S Murakami Eukaryotic Replicative DNA Polymerases Erin Walsh and Kristin A Eckert 17 DNA Repair Polymerases Robert W Sobol 43 Eukaryotic Y-Family Polymerases: A Biochemical and Structural Perspective John M Pryor, Lynne M Dieckman, Elizabeth M Boehm, and M Todd Washington 85 DNA Polymerases That Perform Template-Independent DNA Synthesis 109 Anthony J Berdis Archaeal DNA Polymerases: Enzymatic Abilities, Coordination, and Unique Properties 139 Michael A Trakselis and Robert J Bauer Engineered DNA Polymerases 163 Roberto Laos, Ryan W Shaw, and Steven A Benner Reverse Transcriptases 189 Stuart F.J Le Grice and Marcin Nowotny Telomerase: A Eukaryotic DNA Polymerase Specialized in Telomeric Repeat Synthesis 215 Andrew F Brown, Joshua D Podlevsky, and Julian J.-L Chen 10 Bacteriophage RNA Polymerases 237 Ritwika S Basu and Katsuhiko S Murakami vii viii Contents 11 Mitochondrial DNA and RNA Polymerases 251 Y Whitney Yin 12 Eukaryotic RNA Polymerase II 277 David A Bushnell and Roger D Kornberg 13 Plant Multisubunit RNA Polymerases IV and V 289 Thomas S Ream, Jeremy R Haag, and Craig S Pikaard 14 Structure, Dynamics, and Fidelity of RNA-Dependent RNA Polymerases 309 David D Boehr, Jamie J Arnold, Ibrahim M Moustafa, and Craig E Cameron Index 335 Chapter Introduction to Nucleic Acid Polymerases: Families, Themes, and Mechanisms Michael A Trakselis and Katsuhiko S Murakami Keywords Polymerase • Mechanism • Structure • Function • Catalysis Abbreviations CPD E coli FDX FILS kDa pol Pol I RdRp Rif rRNA TLS UV XPD Cyclobutane pyrimidine dimers Escherichia coli Fidaxomicin Facial dysmorphism, immunodeficiency, livedo, and short statures Kilodaltons Polymerase E coli DNA polymerase I RNA-dependent RNA polymerase Rifampicin Ribosomal RNA Translesion synthesis Ultraviolet light Xeroderma pigmentosum M.A Trakselis (*) Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA e-mail: mtraksel@pitt.edu K.S Murakami (*) Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA The Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA e-mail: kum14@psu.edu K.S Murakami and M.A Trakselis (eds.), Nucleic Acid Polymerases, Nucleic Acids and Molecular Biology 30, DOI 10.1007/978-3-642-39796-7_1, © Springer-Verlag Berlin Heidelberg 2014 14 Structure, Dynamics, and Fidelity of RNA-Dependent RNA Polymerases 327 Arnold JJ, Cameron CE (2000) Poliovirus RNA-dependent RNA polymerase (3D(pol)) Assembly of stable, elongation-competent complexes by using a symmetrical primer-template substrate (sym/sub) J Biol Chem 275(8):5329–5336 Arnold JJ, Cameron CE (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steadystate kinetic analysis of ribonucleotide incorporation in the presence of Mg2+ Biochemistry 43 (18):5126–5137 doi:10.1021/bi035212y Arnold JJ, Gohara DW, Cameron CE (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+ Biochemistry 43(18):5138–5148 doi:10.1021/bi035213q Arnold JJ, Vignuzzi M, Stone JK, Andino R, Cameron CE (2005) Remote site control of an active site fidelity checkpoint in a viral RNA-dependent RNA polymerase J Biol Chem 280(27): 25706–25716 doi:10.1074/jbc.M503444200, M503444200 [pii] Aylward B, Tangermann R (2011) The global polio eradication initiative: lessons learned and prospects for success Vaccine 29(Suppl 4):D80–D85 doi:10.1016/j.vaccine.2011.10.005, S0264-410X(11)01599-4 [pii] Barik S (2012) New treatments for influenza BMC Med 10(1):104 doi:10.1186/1741-7015-10104, 1741-7015-10-104 [pii] Boehr DD, Dyson HJ, Wright PE (2006a) An NMR perspective on enzyme dynamics Chem Rev 106(8):3055–3079 doi:10.1021/cr050312q Boehr DD, McElheny D, Dyson HJ, Wright PE (2006b) The dynamic energy landscape of dihydrofolate reductase catalysis Science 313(5793):1638–1642 doi:10.1126/science 1130258, 313/5793/1638 [pii] Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition Nat Chem Biol 5(11):789–796 doi:10.1038/nchembio.232, nchembio.232 [pii] Boivin S, Cusack S, Ruigrok RW, Hart DJ (2010) Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms J Biol Chem 285(37):28411–28417 doi:10 1074/jbc.R110.117531, R110.117531 [pii] Bressanelli S, Tomei L, Roussel A, Incitti I, Vitale RL, Mathieu M, De Francesco R, Rey FA (1999) Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus Proc Natl Acad Sci USA 96(23):13034–13039 Butcher SJ, Grimes JM, Makeyev EV, Bamford DH, Stuart DI (2001) A mechanism for initiating RNA-dependent RNA polymerization Nature 410(6825):235–240 doi:10.1038/35065653, 35065653 [pii] Cameron CE, Castro C (2001) The mechanism of action of ribavirin: lethal mutagenesis of RNA virus genomes mediated by the viral RNA-dependent RNA polymerase Curr Opin Infect Dis 14(6):757–764 Cameron CE, Moustafa IM, Arnold JJ (2009) Dynamics: the missing link between structure and function of the viral RNA-dependent RNA polymerase? Curr Opin Struct Biol 19(6):768–774 doi:10.1016/j.sbi.2009.10.012, S0959-440X(09)00165-1 [pii] Campagnola G, Weygandt M, Scoggin K, Peersen O (2008) Crystal structure of coxsackievirus B3 3Dpol highlights the functional importance of residue in picornavirus polymerases J Virol 82 (19):9458–9464 doi:10.1128/JVI.00647-08, JVI.00647-08 [pii] Campagnola G, Gong P, Peersen OB (2011) High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors Antiviral Res 91(3):241–251 doi:10.1016/j antiviral.2011.06.006, S0166-3542(11)00348-2 [pii] Castro C, Arnold JJ, Cameron CE (2005) Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective Virus Res 107(2):141–149 doi:10.1016/j.virusres.2004.11.004, S0168-1702(04)00392-2 [pii] Castro C, Smidansky E, Maksimchuk KR, Arnold JJ, Korneeva VS, Gotte M, Konigsberg W, Cameron CE (2007) Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases Proc Natl Acad Sci USA 104(11):4267–4272 doi:10.1073/pnas.0608952104, 0608952104 [pii] 328 D.D Boehr et al Castro C, Smidansky ED, Arnold JJ, Maksimchuk KR, Moustafa I, Uchida A, Gotte M, Konigsberg W, Cameron CE (2009) Nucleic acid polymerases use a general acid for nucleotidyl transfer Nat Struct Mol Biol 16(2):212–218 doi:10.1038/nsmb.1540, nsmb.1540 [pii] Choi KH (2012) Viral polymerases Adv Exp Med Biol 726:267–304 doi:10.1007/978-1-46140980-9_12 Choi KH, Groarke JM, Young DC, Kuhn RJ, Smith JL, Pevear DC, Rossmann MG (2004) The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation Proc Natl Acad Sci USA 101(13):4425–4430 doi:10 1073/pnas.0400660101, 0400660101 [pii] Choi KH, Gallei A, Becher P, Rossmann MG (2006) The structure of bovine viral diarrhea virus RNA-dependent RNA polymerase and its amino-terminal domain Structure 14(7):1107–1113 doi:10.1016/j.str.2006.05.020, S0969-2126(06)00259-0 [pii] Coffey LL, Vignuzzi M (2011) Host alternation of chikungunya virus increases fitness while restricting population diversity and adaptability to novel selective pressures J Virol 85 (2):1025–1035 doi:10.1128/JVI.01918-10, JVI.01918-10 [pii] Coffey LL, Beeharry Y, Borderia AV, Blanc H, Vignuzzi M (2011) Arbovirus high fidelity variant loses fitness in mosquitoes and mice Proc Natl Acad Sci USA 108(38):16038–16043 doi:10 1073/pnas.1111650108, 1111650108 [pii] Davis BC, Thorpe IF (2012) Thumb inhibitor binding eliminates functionally important dynamics in the hepatitis C virus RNA polymerase Proteins 81:40–52 doi:10.1002/prot.24154 Diamond SE, Kirkegaard K (1994) Clustered charged-to-alanine mutagenesis of poliovirus RNA-dependent RNA polymerase yields multiple temperature-sensitive mutants defective in RNA synthesis J Virol 68(2):863–876 Ferrer-Orta C, Arias A, Agudo R, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2006a) The structure of a protein primer-polymerase complex in the initiation of genome replication EMBO J 25(4):880–888 doi:10.1038/sj.emboj.7600971, 7600971 [pii] Ferrer-Orta C, Arias A, Escarmis C, Verdaguer N (2006b) A comparison of viral RNA-dependent RNA polymerases Curr Opin Struct Biol 16(1):27–34 doi:10.1016/j.sbi.2005.12.002, S0959440X(05)00221-6 [pii] Ferrer-Orta C, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2007) Sequential structures provide insights into the fidelity of RNA replication Proc Natl Acad Sci USA 104 (22):9463–9468 doi:10.1073/pnas.0700518104, 0700518104 [pii] Ferrer-Orta C, Agudo R, Domingo E, Verdaguer N (2009) Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase Curr Opin Struct Biol 19(6):752–758 doi:10.1016/j.sbi.2009.10.016, S0959-440X(09)00169-9 [pii] Franklin MC, Wang J, Steitz TA (2001) Structure of the replicating complex of a pol alpha family DNA polymerase Cell 105(5):657–667 doi:10.1016/S0092-8674(01)00367-1, S0092-8674(01)00367-1 [pii] Garriga D, Navarro A, Querol-Audi J, Abaitua F, Rodriguez JF, Verdaguer N (2007) Activation mechanism of a noncanonical RNA-dependent RNA polymerase Proc Natl Acad Sci USA 104 (51):20540–20545 doi:10.1073/pnas.0704447104, 0704447104 [pii] Gavala ML, Bertics PJ, Gern JE (2011) Rhinoviruses, allergic inflammation, and asthma Immunol Rev 242(1):69–90 doi:10.1111/j.1600-065X.2011.01031.x Georgescu MM, Tardy-Panit M, Guillot S, Crainic R, Delpeyroux F (1995) Mapping of mutations contributing to the temperature sensitivity of the Sabin vaccine strain of poliovirus J Virol 69 (9):5278–5286 Gillis AJ, Schuller AP, Skordalakes E (2008) Structure of the Tribolium castaneum telomerase catalytic subunit TERT Nature 455(7213):633–637 doi:10.1038/nature07283, nature07283 [pii] Gnadig NF, Beaucourt S, Campagnola G, Borderia AV, Sanz-Ramos M, Gong P, Blanc H, Peersen OB, Vignuzzi M (2012) Coxsackievirus B3 mutator strains are attenuated in vivo Proc Natl Acad Sci USA 109(34):E2294–E2303 doi:10.1073/pnas.1204022109, 1204022109 [pii] 14 Structure, Dynamics, and Fidelity of RNA-Dependent RNA Polymerases 329 Gohara DW, Crotty S, Arnold JJ, Yoder JD, Andino R, Cameron CE (2000) Poliovirus RNA-dependent RNA polymerase (3Dpol): structural, biochemical, and biological analysis of conserved structural motifs A and B J Biol Chem 275(33):25523–25532 doi:10.1074/jbc M002671200, M002671200 [pii] Gohara DW, Arnold JJ, Cameron CE (2004) Poliovirus RNA-dependent RNA polymerase (3Dpol): kinetic, thermodynamic, and structural analysis of ribonucleotide selection Biochemistry 43(18):5149–5158 doi:10.1021/bi035429s Gong P, Peersen OB (2010) Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase Proc Natl Acad Sci USA 107(52):22505–22510 doi:10 1073/pnas.1007626107, 1007626107 [pii] Gong P, Campagnola G, Peersen OB (2009) A quantitative stopped-flow fluorescence assay for measuring polymerase elongation rates Anal Biochem 391(1):45–55 doi:10.1016/j.ab.2009 04.035, S0003-2697(09)00285-1 [pii] Graci JD, Cameron CE (2002) Quasispecies, error catastrophe, and the antiviral activity of ribavirin Virology 298(2):175–180 doi:10.1006/viro.2002.1487, S004268220291487X [pii] Graci JD, Cameron CE (2008) Therapeutically targeting RNA viruses via lethal mutagenesis Future Virol 3(6):553–566 doi:10.2217/17460794.3.6.553 Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of poliovirus Structure 5(8):1109–1122 Hobdey SE, Kempf BJ, Steil BP, Barton DJ, Peersen OB (2010) Poliovirus polymerase residue plays a critical role in elongation complex stability J Virol 84(16):8072–8084 doi:10.1128/ JVI.02147-09, JVI.02147-09 [pii] Hong Z, Cameron CE, Walker MP, Castro C, Yao N, Lau JY, Zhong W (2001) A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase Virology 285(1):6–11 doi:10.1006/viro.2001.0948, S0042-6822(01)90948-1 [pii] Hsu NY, Ilnytska O, Belov G, Santiana M, Chen YH, Takvorian PM, Pau C, van der Schaar H, Kaushik-Basu N, Balla T, Cameron CE, Ehrenfeld E, van Kuppeveld FJ, Altan-Bonnet N (2010) Viral reorganization of the secretory pathway generates distinct organelles for RNA replication Cell 141(5):799–811 doi:10.1016/j.cell.2010.03.050, S0092-8674(10)00369-7 [pii] Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance Science 282(5394): 1669–1675 Iglesias NG, Filomatori CV, Gamarnik AV (2011) The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis J Virol 85(12):5745–5756 doi:10.1128/ JVI.02343-10, JVI.02343-10 [pii] Jin Z, Deval J, Johnson KA, Swinney DC (2011) Characterization of the elongation complex of dengue virus RNA polymerase: assembly, kinetics of nucleotide incorporation, and fidelity J Biol Chem 286(3):2067–2077 doi:10.1074/jbc.M110.162685, M110.162685 [pii] Jin Z, Leveque V, Ma H, Johnson KA, Klumpp K (2012) Assembly, purification, and pre-steadystate kinetic analysis of active RNA-dependent RNA polymerase elongation complex J Biol Chem 287(13):10674–10683 doi:10.1074/jbc.M111.325530, M111.325530 [pii] Johnson SJ, Beese LS (2004) Structures of mismatch replication errors observed in a DNA polymerase Cell 116(6):803–816 doi:10.1016:S0092-8674(04)00252-1, S0092867404002521 [pii] Joyce CM, Benkovic SJ (2004) DNA polymerase fidelity: kinetics, structure, and checkpoints Biochemistry 43(45):14317–14324 doi:10.1021/bi048422z Kao CC, Del Vecchio AM, Zhong W (1999) De novo initiation of RNA synthesis by a recombinant flaviviridae RNA-dependent RNA polymerase Virology 253(1):1–7 doi:10.1006/viro.1998.9517, S0042682298995174 [pii] Kaushik N, Pandey VN, Modak MJ (1996) Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket Biochemistry 35 (22):7256–7266 doi:10.1021/bi960537i, bi960537i [pii] 330 D.D Boehr et al Kiefer JR, Mao C, Braman JC, Beese LS (1998) Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal Nature 391(6664):304–307 doi:10.1038/34693 Korneeva VS, Cameron CE (2007) Structure-function relationships of the viral RNA-dependent RNA polymerase: fidelity, replication speed, and initiation mechanism determined by a residue in the ribose-binding pocket J Biol Chem 282(22):16135–16145 doi:10.1074/jbc M610090200, M610090200 [pii] Kunkel TA, Bebenek K (2000) DNA replication fidelity Annu Rev Biochem 69:497–529 doi:10 1146/annurev.biochem.69.1.497, 69/1/497 [pii] Lee JH, Alam I, Han KR, Cho S, Shin S, Kang S, Yang JM, Kim KH (2011) Crystal structures of murine norovirus-1 RNA-dependent RNA polymerase J Gen Virol 92(Pt 7):1607–1616 doi:10.1099/vir.0.031104-0, vir.0.031104-0 [pii] Lesburg CA, Cable MB, Ferrari E, Hong Z, Mannarino AF, Weber PC (1999) Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site Nat Struct Biol 6(10):937–943 doi:10.1038/13305 Lescar J, Canard B (2009) RNA-dependent RNA polymerases from flaviviruses and Picornaviridae Curr Opin Struct Biol 19(6):759–767 doi:10.1016/j.sbi.2009.10.011, S0959440X(09)00164-X [pii] Leung BW, Chen H, Brownlee GG (2010) Correlation between polymerase activity and pathogenicity in two duck H5N1 influenza viruses suggests that the polymerase contributes to pathogenicity Virology 401(1):96–106 doi:10.1016/j.virol.2010.01.036, S0042-6822(10) 00085-1 [pii] Li Y, Korolev S, Waksman G (1998) Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation EMBO J 17(24):7514–7525 doi:10.1093/emboj/17.24.7514 Luo G, Hamatake RK, Mathis DM, Racela J, Rigat KL, Lemm J, Colonno RJ (2000) De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus J Virol 74(2):851–863 Malet H, Egloff MP, Selisko B, Butcher RE, Wright PJ, Roberts M, Gruez A, Sulzenbacher G, Vonrhein C, Bricogne G, Mackenzie JM, Khromykh AA, Davidson AD, Canard B (2007) Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein J Biol Chem 282(14):10678–10689 doi:10.1074/jbc.M607273200, M607273200 [pii] Marcotte LL, Wass AB, Gohara DW, Pathak HB, Arnold JJ, Filman DJ, Cameron CE, Hogle JM (2007) Crystal structure of poliovirus 3CD protein: virally encoded protease and precursor to the RNA-dependent RNA polymerase J Virol 81(7):3583–3596 doi:10.1128/JVI.02306-06, JVI.02306-06 [pii] McDonald SM, Tao YJ, Patton JT (2009) The ins and outs of four-tunneled Reoviridae RNA-dependent RNA polymerases Curr Opin Struct Biol 19(6):775–782 doi:10.1016/j.sbi 2009.10.007, S0959-440X(09)00160-2 [pii] Mestas SP, Sholders AJ, Peersen OB (2007) A fluorescence polarization-based screening assay for nucleic acid polymerase elongation activity Anal Biochem 365(2):194–200 doi:10.1016/j.ab 2007.03.039, S0003-2697(07)00189-3 [pii] Michielssens S, Moors SL, Froeyen M, Herdewijn P, Ceulemans A (2011) Structural basis for the role of LYS220 as proton donor for nucleotidyl transfer in HIV-1 reverse transcriptase Biophys Chem doi:10.1016/j.bpc.2011.03.009, S0301-4622(11)00066-4 [pii] Miller ER, McNally S, Wallace J, Schlichthorst M (2012) The ongoing impacts of hepatitis c – a systematic narrative review of the literature BMC Public Health 12(1):672 doi:10.1186/14712458-12-672, 1471-2458-12-672 [pii] Mosley RT, Edwards TE, Murakami E, Lam AM, Grice RL, Du J, Sofia MJ, Furman PA, Otto MJ (2012) Structure of hepatitis C virus polymerase in complex with primer-template RNA J Virol 86(12):6503–6511 doi:10.1128/JVI.00386-12, JVI.00386-12 [pii] Moustafa IM, Shen H, Morton B, Colina CM, Cameron CE (2011) Molecular dynamics simulations of viral RNA-dependent RNA polymerases link conserved and correlated motions of functional elements to fidelity J Mol Biol 410:159–181 14 Structure, Dynamics, and Fidelity of RNA-Dependent RNA Polymerases 331 Nashine VC, Hammes-Schiffer S, Benkovic SJ (2010) Coupled motions in enzyme catalysis Curr Opin Chem Biol 14(5):644–651 doi:10.1016/j.cbpa.2010.07.020, S1367-5931(10)00103-1 [pii] Ng KK, Cherney MM, Vazquez AL, Machin A, Alonso JM, Parra F, James MN (2002) Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase J Biol Chem 277(2):1381–1387 doi:10.1074/jbc.M109261200, M109261200 [pii] Ng KK, Arnold JJ, Cameron CE (2008) Structure-function relationships among RNA-dependent RNA polymerases Curr Top Microbiol Immunol 320:137–156 Nomoto A, Omata T, Toyoda H, Kuge S, Horie H, Kataoka Y, Genba Y, Nakano Y, Imura N (1982) Complete nucleotide sequence of the attenuated poliovirus Sabin strain genome Proc Natl Acad Sci USA 79(19):5793–5797 O’Reilly EK, Kao CC (1998) Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure Virology 252(2):287–303 doi:10.1006/viro.1998.9463, S0042-6822(98)99463-6 [pii] Paul AV, Rieder E, Kim DW, van Boom JH, Wimmer E (2000) Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg J Virol 74(22):10359–10370 Paul AV, Yin J, Mugavero J, Rieder E, Liu Y, Wimmer E (2003) A “slide-back” mechanism for the initiation of protein-primed RNA synthesis by the RNA polymerase of poliovirus J Biol Chem 278(45):43951–43960 doi:10.1074/jbc.M307441200, M307441200 [pii] Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity Proc Natl Acad Sci USA 100(12):7289–7294 doi:10.1073/pnas.1232294100, 1232294100 [pii] Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements EMBO J 8(12):3867–3874 Poranen MM, Salgado PS, Koivunen MR, Wright S, Bamford DH, Stuart DI, Grimes JM (2008) Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase Nucleic Acids Res 36(20):6633–6644 doi:10.1093/nar/gkn632, gkn632 [pii] Ranjith-Kumar CT, Kim YC, Gutshall L, Silverman C, Khandekar S, Sarisky RT, Kao CC (2002) Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals J Virol 76(24):12513–12525 Ren Z, Ghose R (2011) Slow conformational dynamics in the cystoviral RNA-directed RNA polymerase P2: influence of substrate nucleotides and template RNA Biochemistry 50(11): 1875–1884 doi:10.1021/bi101863g Ren Z, Wang H, Ghose R (2010) Dynamics on multiple timescales in the RNA-directed RNA polymerase from the cystovirus phi6 Nucleic Acids Res 38(15):5105–5118 doi:10.1093/nar/ gkq210, gkq210 [pii] Rodriguez-Wells V, Plotch SJ, DeStefano JJ (2001) Primer-dependent synthesis by poliovirus RNA-dependent RNA polymerase (3D(pol)) Nucleic Acids Res 29(13):2715–2724 Salgado PS, Makeyev EV, Butcher SJ, Bamford DH, Stuart DI, Grimes JM (2004) The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase Structure 12(2):307–316 doi:10.1016/j.str.2004.01.012, S0969212604000243 [pii] Schramm VL (2011) Enzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes Annu Rev Biochem 80:703–732 doi:10.1146/annurev-biochem061809-100742 Seckler JM, Howard KJ, Barkley MD, Wintrode PL (2009) Solution structural dynamics of HIV-1 reverse transcriptase heterodimer Biochemistry 48(32):7646–7655 doi:10.1021/bi900790x Silva RG, Murkin AS, Schramm VL (2011) Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme Proc Natl Acad Sci USA 108(46):18661–18665 doi:10.1073/pnas.1114900108, 1114900108 [pii] Steil BP, Barton DJ (2009) Cis-active RNA elements (CREs) and picornavirus RNA replication Virus Res 139(2):240–252 doi:10.1016/j.virusres.2008.07.027, S0168-1702(08)00284-0 [pii] 332 D.D Boehr et al Tahirov TH, Temiakov D, Anikin M, Patlan V, McAllister WT, Vassylyev DG, Yokoyama S (2002) Structure of a T7 RNA polymerase elongation complex at 2.9 A resolution Nature 420 (6911):43–50 doi:10.1038/nature01129, nature01129 [pii] Tao Y, Farsetta DL, Nibert ML, Harrison SC (2002) RNA synthesis in a cage – structural studies of reovirus polymerase lambda3 Cell 111(5):733–745 doi:10.1016/S0092-8674(02)01110-8, S0092867402011108 [pii] Temiakov D, Patlan V, Anikin M, McAllister WT, Yokoyama S, Vassylyev DG (2004) Structural basis for substrate selection by t7 RNA polymerase Cell 116(3):381–391 doi:10.1016/S00928674(04)00059-5, S0092867404000595 [pii] Thompson AA, Peersen OB (2004) Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase EMBO J 23(17):3462–3471 doi:10.1038/sj emboj.7600357, 7600357 [pii] Thompson AA, Albertini RA, Peersen OB (2007) Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions J Mol Biol 366(5):1459–1474 doi:10.1016/j.jmb 2006.11.070, S0022-2836(06)01629-9 [pii] Tokuriki N, Oldfield CJ, Uversky VN, Berezovsky IN, Tawfik DS (2009) Do viral proteins possess unique biophysical features? Trends Biochem Sci 34(2):53–59 doi:10.1016/j.tibs.2008.10 009, S0968-0004(08)00253-3 [pii] Uchil PD, Satchidanandam V (2003) Architecture of the flaviviral replication complex Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments J Biol Chem 278(27):24388–24398 doi:10.1074/jbc.M301717200, M301717200 [pii] Van Slyke GA, Ciota AT, Willsey GG, Jaeger J, Shi PY, Kramer LD (2012) Point mutations in the West Nile virus (Flaviviridae; Flavivirus) RNA-dependent RNA polymerase alter viral fitness in a host-dependent manner in vitro and in vivo Virology 427(1):18–24 doi:10.1016/j.virol 2012.01.036, S0042-6822(12)00083-9 [pii] Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population Nature 439(7074): 344–348 doi:10.1038/nature04388, nature04388 [pii] Vignuzzi M, Wendt E, Andino R (2008) Engineering attenuated virus vaccines by controlling replication fidelity Nat Med 14(2):154–161 doi:10.1038/nm1726, nm1726 [pii] Villali J, Kern D (2010) Choreographing an enzyme’s dance Curr Opin Chem Biol 14(5): 636–643 doi:10.1016/j.cbpa.2010.08.007, S1367-5931(10)00110-9 [pii] Weeks SA, Lee CA, Zhao Y, Smidansky ED, August A, Arnold JJ, Cameron CE (2012) A polymerase mechanism-based strategy for viral attenuation and vaccine development J Biol Chem 287(38):31618–31622 doi:10.1074/jbc.C112.401471, C112.401471 [pii] Yang X, Welch JL, Arnold JJ, Boehr DD (2010) Long-range interaction networks in the function and fidelity of poliovirus RNA-dependent RNA polymerase studied by nuclear magnetic resonance Biochemistry 49(43):9361–9371 doi:10.1021/bi100833r Yang X, Smidansky ED, Maksimchuk KR, Lum D, Welch JL, Arnold JJ, Cameron CE, Boehr DD (2012) Motif D of viral RNA-dependent RNA polymerases determines efficiency and fidelity of nucleotide addition Structure 29(9):1519–1527 Yap TL, Xu T, Chen YL, Malet H, Egloff MP, Canard B, Vasudevan SG, Lescar J (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85angstrom resolution J Virol 81(9):4753–4765 doi:10.1128/JVI.02283-06, JVI.02283-06 [pii] Yin YW, Steitz TA (2002) Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase Science 298(5597):1387–1395 doi:10.1126/science 1077464, 1077464 [pii] 14 Structure, Dynamics, and Fidelity of RNA-Dependent RNA Polymerases 333 Zamyatkin DF, Parra F, Machin A, Grochulski P, Ng KK (2009) Binding of 20 -amino20 -deoxycytidine-50 -triphosphate to norovirus polymerase induces rearrangement of the active site J Mol Biol 390(1):10–16 doi:10.1016/j.jmb.2009.04.069, S0022-2836(09)00536-1 [pii] Zhou J, Schweikhard V, Block SM (2012) Single-molecule studies of RNAPII elongation Biochim Biophys Acta 1829:29–38 doi:10.1016/j.bbagrm.2012.08.006, S1874-9399(12) 00149-6 [pii] Zhu W, Zhu Y, Qin K, Yu Z, Gao R, Yu H, Zhou J, Shu Y (2012) Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice PLoS One 7(3): e33383 doi:10.1371/journal.pone.0033383, PONE-D-11-15459 [pii] Index A α-amanitin, 284 Archaeal DNA polymerases crenarchaeal B-family PolB1, 141–143 PolB2, 143 PolB3, 144 D-family, 145–146 vs eukaryotes, 140 euryarchaeal B-family, 144–145 PriSL primase, 149 proliferating cell nuclear antigen (PCNA) B-family polymerases, 150 complexation, 150, 151 D-family polymerases, 150 lesion bypass polymerases, 151–152 PCNA-interacting peptide (PIP) box, 150 replication and repair, coordination oligomeric DNA polymerase complexes, 152–153 participation, 155–156 thermodynamic DNA polymerase selection, 153–154 uracil read-ahead function, 155 Y-family error rate, 146–147 lesion bypass, 147–148 pyrophosphorolysis, 148–149 steric gate, 148 structural similarity, 146–147 Archaeal Y-family lesion bypass polymerase, 146–149 Artificially expanded genetic information systems (AEGIS), 177–178 B Bacteriophage RNA polymerases (RNAPs) N4 vRNAP characterization, 246 nucleotidyl transfer reaction, 247–249 structure, 246–247 unique hairpin promoter DNA recognition, 247 transcription elongation nucleotide addition cycle, 243–245 promoter release and processivity, 241–243 transition to elongation complex, 243 T7 RNAP promoter binding, 238–240 transcript initiation, 240–241 Base excision repair (BER) pathway backup DNA polymerases, 52–53 damage sources, 47 DNA polymerase β DNA damaging agents, 49 mouse embryonic fibroblasts, 50 mouse knockout, 51 posttranslational modification, 50 somatic/germline mutations, 51 structural and functional details, 48, 49 DNA polymerase γ MYH-mediated repair, 52 nonhomologous end joining, 51–52 oxidative damage, 52 long-patch BER, 47, 48 mitochondria, 258–259 mitochondrial BER, 53–54 short-patch BER, 47, 48 K.S Murakami and M.A Trakselis (eds.), Nucleic Acid Polymerases, Nucleic Acids and Molecular Biology 30, DOI 10.1007/978-3-642-39796-7, © Springer-Verlag Berlin Heidelberg 2014 335 336 B-family DNA replication polymerases crenarchaeal PolB1, 141–143 PolB2, 143 PolB3, 144 euryarchaeal, 144–145 BRCA1 C-terminal (BRCT) domain, 88, 89, 98 Bridge helix, 283 C Cap snatching, 315–316 Cognate lesions, 86–87 Compartmentalized self-replication (CSR) artificially expanded genetic information systems (AEGIS), 177–178 DNA polymerases, 179–181 history, 177 laboratory applications, 177 PCR amplification, 177, 178 Taq polymerase, heterotachous sites, 182, 183 Z:P pair, 178, 182 Crenarchaeal B-family DNA replication polymerases, 141–144 C-terminal extension (CTE), 219, 220 D D-family polymerases (PolD), archaeal-specific, 145–146 Directed evolution genetic diversity, 168, 169 genotype-phenotype linkage compartmentalized self-replication (CSR), 177–182 phage display, 182–183 screening, 176 library creation and protein sequence space, 168–170 unguided library creation, 171–172 DNA interstrand cross-links (ICLs), 63–65 DNA lesions, 87 DNA polymerases classification and function RNA-dependent, 4–5 single catalytic subunit, 2–4 conserved structures, 7–9 domain, RTs error rate, 199–200 HIV-1 RT, 197–199 low-processivity, 200 polymerization rate, 199 Index engineered (see Engineered DNA polymerases) template-dependent DNA synthesis, 110, 111 template-independent DNA synthesis double-strand breaks, 112 nonhomologous end joining, 113–114 pol β and λ, 112 pol μ, 112 primary amino acid sequence information, 123 TdT (see Terminal deoxynucleotidyl transferase (TdT)) DNA repair polymerases BER pathway (see Base excision repair (BER) pathway) double-strand break repair (see Double-strand break repair) interstrand cross-links repair, 63–64 mismatch repair pathway DNA metabolism, 62 DNA polymerase delta, 62–63 DNA replication fidelity improvement, 62 replicative polymerases δ and ε, 63 nucleotide excision repair pathway Pol δ and Pol ε, 59–61 Pol κ, 61 sub-pathways, 59 repair pathways, 46 Double-strand break repair homologous recombination pathway, 58–59 nonhomologous end joining (NHEJ) pathway DNA polymerase μ, 56 DNA polymerase β, 57–58 DNA polymerase λ, 56–57 NHEJ functioning mechanism, 54, 55 terminal deoxynucleotidyltransferase (TdT), 57 E Engineered DNA polymerases direct design fused polymerases, 166–167 guided modifications, 165–166 genotype–phenotype linkage compartmentalized self-replication (CSR), 177–182 phage display, 182–183 screening, 176 literature, 183–184 Index polymerase chain reaction (PCR), 164 protein engineering methods directed evolution, 168–172 gene shuffling/molecular breeding, 172–174 neutral drift libraries, 175–176 reconstructing evolutionary adaptive paths (REAP) approach, 174–175 Taq polymerase (Taq pol I), 164 Error-prone PCR (ePCR), 171 Eukaryotic replicative DNA polymerases composition, 19 DNA polymerase δ DNA substrates partitioning, 24 DNA synthesis, 23 high DNA synthesis fidelity, 24 homozygous mutations, 22 intrinsic kinetic properties, 24 mammalian Pol δ, 21–22 nucleotide misincorporation, 24–25 posttranslational regulation, 21–22 Schizosaccharomyces pombe, 22 structure, 22 DNA polymerase ε base substitution error rates, 27 chromosomal replication, 26 high fidelity, 27 immunodepletion, 26 vs Pol δ, 26 posttranslational regulation, 27–28 structure, 25–26 future aspects, 32 polymerase α-primase catalytic activities, 19 chromosomal replication, 18 moderately accurate polymerase, 20–21 posttranslational regulation, 21 p49 subunit, 19, 20 short RNA-DNA primers synthesis, 20 structure, 18 replication fork cell cycle checkpoint responses, 30–32 leading and lagging strands, 28–30 replication initiation, 28 Eukaryotic RNA polymerase II See Yeast RNA pol II Euryarchaeal B-family DNA replication polymerases, 144–145 F Fialuridine (1-(2-deoxy-2-fluoro-b-Darabinofuranosyl)-5-iodouracil (FIAU), 261–262 337 Fork loop, 283 Fused polymerases, 166–167 G Gene shuffling history, 172, 173 laboratory applications, 173–174 natural evolution, 173 Genotype–phenotype linkage compartmentalized self-replication (CSR) artificially expanded genetic information systems (AEGIS), 177–178 DNA polymerases, 179–181 history, 177 laboratory applications, 177 PCR amplification, 177, 178 Taq polymerase, heterotachous sites, 182, 183 Z:P pair, 178, 182 phage display, 182–183 screening, 176 H HIV-1 RT error rate, 199–200 nonnucleoside RT inhibitors (NNRTIs), 200 p51 subunit, 196 RNase H, 203–206 structure, 197–198 termination mechanism, 194 I Insertion in fingers domain (IFD), 220 L Library creation, directed evolution protein sequence space, 168–170 unguided, 171–172 Lid loop, 283 Long-patch BER (LP-BER), 47, 48, 258 M Minus-strand ssRNA viruses, 315–316 Mismatch repair (MMR) pathway DNA metabolism, 62 DNA polymerase delta, 62–63 DNA replication fidelity improvement, 62 replicative polymerases δ and ε, 63 338 Mitochondria DNA replication asymmetrical synthesis mechanism, 252–254 conventional mode, 252 displacement mode, 252 fungi, 254 human mitochondrial DNA, 252, 253 pol γ (see Polmerase γ holoenzyme) oxidative phosphorylation, 252 RNA transcription gene expression, ATP, 269 gene structure, 264–265 HMG proteins, 266 Mtf1, 266 mtRNAP, 267, 268 oxidative mtDNA damage, 269 promoter-specific transcription, 267 Rpo41, 265–266, 268 TFAM, 266 TFB1M and TFBM2, 266, 267 T7 RNAP, 267 Molecular breeding See Gene shuffling N Neutral drift libraries, 175–176 Nonhomologous end joining (NHEJ) pathway base excision repair (BER) pathway, 51–52 double-strand break repair DNA polymerase μ, 56 DNA polymerase β, 57–58 DNA polymerase λ, 56–57 NHEJ functioning mechanism, 54, 55 terminal deoxynucleotidyltransferase (TdT), 57 template-independent DNA synthesis, 113–114 Non-LTR retrotransposition mechanism, 195 Nucleic acid polymerases classification and function DNA polymerase, 2–5 RNA polymerase, 5–6 conserved structures DNA polymerase, 7–9 RNA polymerase, 10 discovery, family members, 2, future applications, 12–13 implications, disease/therapy, 11–12 Index Nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) clinical manifestations, 259 drug toxicity, 260, 261 HIV and HBV, 260–262 Nucleotide addition cycle nucleoside triphosphates (NTPs), 243 substrate loading, catalytic site, 244 substrate selection, pre-insertion site, 244 translocation, 245 Nucleotide excision repair (NER) pathway DNA polymerases Pol δ and Pol ε, 59–61 Pol κ, 61 sub-pathways, 59 N4 vRNAP characterization, 246 nucleotidyl transfer reaction, 247–249 structure, 246–247 unique hairpin promoter DNA recognition, 247 P PCNA-interacting peptide (PIP) box, 150 Phage display, 182–183 Plus-sense single stranded (ss) RNA viruses, 315 Poliovirus (PV) RdRp catalytic mechanism, 320–322 crystal structures, 318–320 dynamics Gly64Ser substitution, 322–325 MD simulations, 323, 325 NMR and mutational studies, 326 role of, 324 structure–function paradigm, 326 X-ray crystallography, 323, 324 kinetic mechanism chemistry, 317–318 nucleotide addition cycle, 316–317 pre-chemistry conformational change, 317–320 symmetrical primer–template RNA substrate, 316 structural differences, 316 viral pathogenesis and virulence, 322 Polmerase γ holoenzyme in mitochondrial DNA repair, 258–259 mutations Alpers syndrome, 263–264 MELAS, 264 Index oxidative damage, 264 progressive external ophthalmoplegia, 263 NRTIs clinical manifestations, 259 drug toxicity, 260, 261 HIV and HBV, 260–262 pol γA AID subdomain, 254–255 vs bacteriophage T7 DNA polymerase, 255–256 enzymatic activities, 253 IP subdomain, 254 vs pol γB, 257 pol γB interaction, 255 spacer domain, 254 pol γB functions, 253–254 Pol γA–distal Pol γB monomer, 257–258 processivity, 256–257 species-dependent variation, 257 Polymerase-associated domain (PAD), 87, 88, 91, 92 Posttranslational regulation DNA polymerase δ, 21–22 DNA polymerase ε, 27–28 polymerase α-primase, 21 PriSL primase, 149 Proliferating cell nuclear antigen (PCNA) B-family polymerases, 150 complexation, 150, 151 D-family polymerases, 150 DNA polymerase δ, 23 lesion bypass polymerases, 151–152 PCNA-interacting peptide (PIP) box, 150 Y-family polymerase interaction ubiquitin-modified PCNA, 98–99 umodified PCNA, 96–98 Protein engineering method directed evolution library creation and protein sequence space, 168–170 unguided library creation, 171–172 gene shuffling/molecular breeding history, 172, 173 laboratory applications, 173–174 natural evolution, 173 neutral drift libraries, 175–176 reconstructing evolutionary adaptive paths (REAP) approach, 174–175 339 R Reconstructing evolutionary adaptive paths (REAP) approach, 174–175 Replication factor C (RFC), 23 Retrotransposition mechanism, non-LTR elements See Non-LTR retrotransposition mechanism Retrotransposons, 190 Reverse transcriptases (RTs) connection and RNase H domains cellular types, 201 metal ion-assisted catalysis, 203 nucleic acid substrate, 203–204 phosphate-binding pocket, 202–203 definition, 190 DNA polymerase domain error rate, 199–200 HIV-1 RT, 197–199 low-processivity, 200 polymerization rate, 199 non-LTR retrotransposition mechanism, 195 retrotransposons, 190 retroviruses, 190 substrate binding and coordination, 204–206 subunit organization alpharetroviruses, 196 monomeric and dimeric, 196–197 TERT, 219–220 viral DNA synthesis, LTR elements central termination, 194–195 polypurine tract-primed (+) strand DNA synthesis, 193 (-) strand strong-stop DNA synthesis and strand transfer, 193 tRNA-primed (-) DNA synthesis, 191, 193 tRNA primer removal and (+) strand DNA transfer, 193–194 Rev1-interacting region (RIR), 89, 101 Ribonucleoprotein (RNP) core composition, 217 evolutionary aspects, 224–225 RNA-dependent DNA polymerase, 4–5 RNA-dependent RNA polymerase (RdRp) antiviral therapies, 311 biophysical techniques, 311–312 catalytic mechanism, 320–322 conformational changes, 311 dynamics 340 Gly64Ser substitution, 322–325 MD simulations, 323, 325 NMR and mutational studies, 326 role of, 324 structure–function paradigm, 326 X-ray crystallography, 323, 324 internal protein motions, 311 intrinsic genetic variation, 311 kinetic mechanism chemistry, 317–318 nucleotide addition cycle, 316–317 pre-chemistry conformational change, 317–320 symmetrical primer–template RNA substrate, 316 nucleotide incorporation fidelity, 310–311 structural architecture domains, 312 initiation mechanisms, 312–314 motifs and functional importance, 312, 314 structural differences dsRNA viruses, 316 minus-strand ssRNA viruses, 315–316 plus-sense single stranded (ss), 315 viral pathogenesis and virulence, 322, 323 RNA polymerase classification and function, 5–6 conserved structures, 10 RNase H domains cellular types, 201 metal ion-assisted catalysis, 203 nucleic acid substrate, 203–204 phosphate-binding pocket, 202–203 Rudder loop, 283 S Short-patch BER, 47, 48 Single-nucleotide BER (SN-BER), 258 Solvent deuterium kinetic isotope effects (SDKIE), 317–318 T Taq polymerase (Taq pol I) DNA polymerase I, 164, 165 fused polymerase, 166–167 heterotachous sites, 182, 183 TATA-binding protein 214 (TBP), 285, 286 Telomerase anticancer therapeutics, 229–230 catalytic cycle, 217, 218 mechanism Index duplex binding, 229 duplex dissociation, 227 nucleotide addition, 225–227 strand separation, 228 template realignment, 229 ribonucleoprotein (RNP) core composition, 217 evolutionary aspects, 224–225 telomerase reverse transcriptase (TERT) C-terminal extension (CTE), 219, 220 reverse transcriptase (RT), 219–220 telomerase essential N-terminal (TEN), 218, 219 telomerase RNA-binding domain (TRBD), 219 telomerase RNA (TR) conserved core, 221, 222 H/ACA domain, 223 pseudoknot and stem-loop moiety, 221–222 template boundary element (TBE), 223 yeast and filamentous fungi, 222–224 telomeres, 216 Telomerase essential N-terminal (TEN), 218, 219 Telomerase reverse transcriptase (TERT) C-terminal extension (CTE), 219, 220 reverse transcriptases (RTs), 219–220 telomerase essential N-terminal (TEN), 218, 219 telomerase RNA-binding domain (TRBD), 219 Telomerase RNA (TR) conserved core, 221, 222 H/ACA domain, 223 pseudoknot and stem-loop moiety, 221–222 template boundary element (TBE), 223 yeast and filamentous fungus, 222–224 Telomerase RNA-binding domain (TRBD), 219 Telomeres, 216 Template-dependent DNA synthesis, 110, 111 Template-independent DNA synthesis DNA polymerases double-strand breaks, 112 nonhomologous end joining, 113–114 pol β and λ, 112 pol μ, 112 primary amino acid sequence information, 123 TdT (see Terminal deoxynucleotidyl transferase (TdT)) Index double-strand breaks, 112 primary amino acid sequence information, 123 Terminal deoxynucleotidyl transferase (TdT) biochemical applications, 130 cancer acute lymphocytic leukemia, 127 anticancer agents, 127–128 chronic lymphocytic leukemia, 127 3-Eth-5-NIdR, 128–129 merkel cell carcinoma, 129–130 5-nitroindolyl-20 -deoxynucleoside triphosphate, 128 prognosis and survival, 127 enzymatic properties of, 119–120 kinetic mechanism conformational changes, 121 ordered substrate binding, 120 product release, 120–121 regulation of PCNA interaction, 127 posttranslational regulation, 126 protein–protein interactions, 126–127 sources and purification, 118–119 tertiary structure amino acids, 126 crystal structure, 123, 124 metal ions, 123 subdomains, 124, 125 Transcription elongation, RNAPs nucleotide addition cycle nucleoside triphosphates (NTPs), 243 substrate loading, catalytic site, 244 substrate selection, pre-insertion site, 244 translocation, 245 promoter release and processivity N-terminal domain (NTD), 241 RNA exit channel formation, 241, 243 transition to elongation complex, 243 Translesion synthesis (TLS), 86 T7 RNAP promoter binding, 238–240 transcript initiation, 240–241 U Ubiquitin-binding motif (UBM), 89, 98 Ubiquitin-binding zinc finger (UBZ), 89, 99 Ubiquitin-modified PCNA, 98–99 Unmodified PCNA, 96–98 341 V Viral DNA synthesis and reverse transcription central termination, 194–195 polypurine tract-primed (+) strand DNA synthesis, 193 () strand strong-stop DNA synthesis and strand transfer, 193 tRNA-primed () DNA synthesis, 191, 193 tRNA primer removal and (+) strand DNA transfer, 193–194 Virion protein genome (VPg), 315 W Werner syndrome protein (WRN), 25 X X-family DNA polymerases template-independent DNA synthesis nonhomologous end joining, 113–114 pol β and λ, 112 pol μ, 112 primary amino acid sequence information, 123 TdT (see Terminal deoxynucleotidyl transferase (TdT)) V(D)J recombination, 115–117 Y Yeast RNA pol II electron density map, 278 synchrotrons, 278 ten-subunit pol II, yeast, 278, 279 transcribing complex α-amanitin, 284 bridge helix, 283 DNA-RNA hybrid, 279, 280 fork loop, 283 magnesium ions and NTP entry site, 280 pol II-TFIIB complex, 284–286 post-translocation complex, 280 pre-translocation complex, 280 Rpb4 and Rpb7 subunits, 283–284 rudder and lid loop, 283 structure, 279 tailed template, 278 trigger loop, 280–282 342 Y-family polymerases catalytic activity core regions and active sites, 92 DNA polymerase η, 90–91 DNA polymerase ι, 91, 93 DNA polymerase κ, 93–94 Rev1, 95–96 cognate lesions, 86–87 DNA lesions, 87 interactions DNA polymerase η, 100–101 protein–protein interactions, 100 Rev1, 101–102 ubiquitin-modified PCNA, 98–99 unmodified PCNA, 96–98 Index lesion bypass error rate, 146–147 lesion bypass, 147–148 PCNA, 151–152 pyrophosphorolysis, 148–149 steric gate, 148 structural similarity, 146–147 structures of BRCA1 C-terminal domain, 88 C-terminal regions, 87–88 domains, 87 full-length Y-family polymerases, 89–90 translesion synthesis, 86