1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Developments in Heat Transfer Part 6 pot

40 475 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 40
Dung lượng 1,79 MB

Nội dung

wide reaction temperature range, high heat and mass transfer rates, fast reaction kinetic, low material prices, non toxic material. Thus, the combination of a porous shell with moisture- sensitive compound as xylitol would be useful for a material design of new functional microparticles for thermal and moisture management (Salaün et al., 2011). 6. Acknowledgment I would like to thank the French Institute of Textiles and Clothing (IFTH, 2 rue de la Recherche, 59650 Villeneuve d’Ascq, France) and Damartex (2, avenue de la Fosse-aux- Chêne, 59100 Roubaix, France) for funding these researches. 7. References Abhat, A. (1983). Low temperature latent heat thermal energy storage: heat storage materials. Solar energy, Vol.30, No.4, (1983), pp. 313-332, ISSN 0038-092X Alay, S., Göde, F. & Alkan, C. (2010). Preparation and Caharcterization of Poly(methylmethacrylate-co-glycidyl methacrylate)/n-hexadecane Nanocapsules as a fiber additive for Thermal energy Storage. Fibres and Polymers, Vol.11, No.8, (December 2010), pp.1089-1093, ISSN 1229-9197 Alkan, C., Kaya, K. & Sari, A. (2008). Preparation and thermal properties of ethylene glycole distearate as a novel phase change material for energy storage. Material Letters, Vol.62, No.6-7, (March 2008), pp. 1122-1125, ISSN 0167-577X Alkan, C., Sari, A., Karaipekli, A. & Uzun, O. (2009). Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, Vol.93, No.1, (January 2009), pp. 143- 147, ISSN 0927-0248 Alkan, C., Sari, A. & Karaipekli, A. (2011). Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Conversion and Management, Vol.52, No.1, (January 2011), pp. 687-692, ISSN 0196-8904 Arshady, R. (1990). Microspheres and Microcapsules, a Survey of Manufacturing Techniques Part II: Coacervation. Polymer engineering and Science, Vol.30, No.15, (Mid-August 1990), pp. 905-914, ISSN 0032-3888 Bayes-Garcia, L., Ventola, L., Cordobilla, R., Benages, R., Calvet, T.& Cuevas-Diarte, M.A. (2010). Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability. Solar Energy Materials and Solar Cells, Vol.94, No.7, (July 2010), pp. 1235-1240, ISSN 0927- 0248 Bendrowska, W. (2006). Intelligent textiles with PCMs, In: Intelligent textiles and clothing, Mattila, pp.34-62, Woodhead Publishing in Textiles, ISBN 978-1-84569-005-2, Cambridge, England Benita, S. (1996). Microencapsulation: methods and industrial applications. Marcel Dekker Inc., ISBN 978-0-8247-2317-0, New York Biswas, D.R. (1977). Thermal energy storage using sodium sulphate decahydrate and water. Solar Energy, Vol.10, No.1, (January 1977), pp.99-100, ISSN 0038-092X Bo, H., Gustafsson, E.M. & Setterwall F. (1999). Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy, Vol.24, No. 12, (January 1999), pp. 1015-1028, ISSN 0360-5442 Borreguero, A.M., Valverde, J.L., Rodriguez, J.F., Barber, A.H., Cubillo, J.J. & Carmona, M. (2011). Synthesis and characterization of microcapsules containing Rubitherm®RT27 obtained by spray drying. Chemical Engineering Journal, Vol.166, No.1, (January 2011), pp. 384-390, ISSN 1385-8947 Brown, R.C., Rasberry, J.D. & Overmann, S.P. (1998). Microencapsulated phase-change materials as heat transfer media in gas-fluidized beds. Powder Technology, Vol.98, No.3, (August 1998), pp. 217-222, ISSN 0032-5910 Bryant, Y.G. & Colvin, D.P. (1988). Fibre and Reversible Enhanced Thermal Storage Properties and Fabric Made There From. US Patent 4,756,958, available from http://patft.uspto.gov/ Bryant, Y.G. & Colvin, D.P. (1994). Fabric with reversible enhanced thermal properties. US Patent 5,366,801, available from http://patft.uspto.gov/ Bryant, Y.G. & Colvin, D.P. (1996). Moldable foam insole with reversible enhanced thermal storage properties. US Patent 5,499,460, available from http://patft.uspto.gov/ Bryant, Y.G. (1999). Melt spun fibres containing microencapsulated phase change material. IN: Advances in Heat and Mass Transfer in Biotechnology; HTD- Vol.363/BED-VOl.44, pp.225-234, ISBN 0791816435 Choi, K., Cho, G., Kim, P. & Cho, C. (2004). Thermal Storage/Release and Mechanical Properties of Phase Change Materials on Polyester Fabrics. Textile Research Journal, Vol.74, No.4, (April 2004), pp.292-296, ISSN 0040-5175 Cho, J.S., Kwon, A. & Cho, C.G. (2002). Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polymer Science , Vol. 280, No.3, (March 2002), pp. 260-266, ISSN 0303-402X Chung, H. & Cho, G. (2004). Thermal Properties and Physiological Responses of Vapor- Permeable Water-Repellent Fabrics Treated with Microcapsule-containing PCMs. Textile Research Journal, Vol.74, No.7, (July 2004), pp.571-575, ISSN 0040-5175 Colvin, D.P. (2000). Encapsulated phase change materials, The 2 nd International Conference on Safety & Protective Fabrics , , Winston-Salem, North Carolina, 28-30 April 2000 Colvin, D.P. & Bryant, Y.G. (1996). Thermally enhanced foam insulation. US Patent 5, 637, 389, available from http://patft.uspto.gov/ Colvin, D.P. & Bryant, Y.G. (1998). Protective clothing containing encapsulated phase change materials. ASME: Advances in Heat and Mass Transfer, HTD-vol. 362/BED- vol. 40, pp. 123-32, ISSN 0272-5673 Colvin, D.P. & Mulligan, J.C. (1986). Spacecraft Heat Rejection Methods : Active and Passive Heat Transfer for Electronic Systems – Phase 1. Final Report for Period September 1985 – July 1986, AFWAL-TR-86-3074 . Cox, R. (1998). Synopsis of The new thermal regulation fiber Outlast. Chemical Fibers International , Vol.48, No.6, (December 1998), pp. 475-479, ISSN 0340-3343 Cox, R. (2001). Repositionning acrylic fibres for the new millenium. Chemical Fibers International , Vol.51, No.2, (May 2001), pp.118-120, ISSN 0340-3343 Deveci, S.S. & Basal, G. (2009). Preparation of PCM Microcapsules by Complex Coacervation of Silk Fibroin and Chitosan. Colloid Polymer Science, Vol. 287, No.12, (December 2009), pp.1455-1467, ISSN 0303-402X Fan, J. & Cheng, X.Y. (2005). Heat and Moisture Transfer with Sorption and Phase Change Through Clothing Assemblies, Part II: Theoretical Modeling, Simulation, and Comparison with Experimental Results. Textile Research Journal, Vol. 75, No.3, (March 2005), pp.187-196, ISSN 0040-5175 Fan, Y.F., Zhang, X.X., Wu, S.Z. & Wang, X.C. (2005). Thermal stability and permeability of microencapsulated n-octadecane and cyclohexane. Thermochimica Acta, Vol.429, No.1, (May 2005), pp.25-29, ISSN 0040-6031 Fang, Y., Kuang, S., Gao, X. & Zhang, Z. (2008). Preparation and characterization of novel nanoencapsulated phase change materials. Energy Conversion and Management, Vol.49, No.12, (December 2008), pp. 3704-3707, ISSN 0196-8904 Feldman, D., Shapiro, M.M. & Banu, D. (1986). Organic phase change materials for thermal energy storage. Solar Energy Materials, Vol.13, No.1, (January 1986), pp. 1-10, ISSN 0165-1633 Feldman, D., Shapiro, M.M., Banu, D. & Fuks, C.J. (1989). Fatty acids and their mixtures as phase-change materials for thermal energy storage. Solar Energy Materials, Vol.18, No.3-4, (March 1989), pp. 201-216, ISSN 0165-1633 Feldman, D., Banu, D. & Hawes, D. (1995). Low chain esters of stearic acid as phase change materials for thermal energy storage in buildings. Solar Energy Materials and Solar Cells, Vol.36, No.3, (March 1995), pp. 311-322, ISSN 0927-0248 Gao, X.Y., Han, N., Zhang, X.X. & Yu, W.Y. (2009). Melt-processable acrylonitrile–methyl acrylate copolymers and melt-spun fibers containing MicroPCMs. Journal of Materials Science, Vol.44, No.21, (November 2009), pp. 5877-5884, ISSN 1573-4803 Hawlader, M.N.A., Uddin, M.S. & Zhu, H.J. (2000). Preparation and evaluation of a novel solar storage material: Microencapsulated paraffin. International Journal of Sustainable Energy, Vol.20, No. 4, (September 2000), pp. 227-238, ISSN 0142-5919 Hawlader, M.N.A., Uddin M.S., & Khin, M.M. (2003). Microencapsulated PCM thermal- energy storage system. Applied Energy, Vol.74, No.1-2, (January-February 2003), pp. 195-202, ISSN 0306-2619 Jahns, E. (n.d.). Microencapsulated phase change material, available from: http://www.fskab.com/annex10/WS_pres/Jahns.pdf Jin, Y., Lee, W., Musina, Z. & Ding, Y. (2010). A one-step method for producing microencapsulated phase change materials. Particuology, Vol.8, No.6, (December 2010), pp. 588-590, ISSN 1674-2001 Kaska, K.E. & Chen, M.M. (1985). Improvement of the Performance of Solar Energy of Waste Heat Utilization Systems using Phase Change Slurry as Enhanced Heat Transfer Storage Fluid. Journal of Solar Energy Engineering, Vol.107, No.3, (August 1985), pp. 229-236, ISSN 0199-6231 Kim, J. & Cho, G. (2002).Thermal storage/release, durability, and temperature sensing properties of thermostatic fabrics treated with octadecane-containing microcapsules. Textile Research Journal, Vol.72, No.12, (December 2002), pp. 1093- 1098, ISSN 0040-5175 Kumano, H., Saito, A., Okawa, S., Takeda, K. & Okuda, A. (2005). Study of direct contact melting with hydrocarbon mixtures as the PCM. International Journal of Heat and Mass Transfer , Vol.48, No.15, (July 2005), pp. 3212-3220, ISSN 0017-9310 Lan, X., Tan, Z., Zou, G., Sun L. & Zhang T. (2004). Microencapsulation of n-eicosane as energy storage material. Chinese Journal of Chemistry, Vol.22, No.5, (May 2004), pp. 411–414, ISSN 1614-7065 Lane, G.A. (1980). Low temperature heat storage with phase change materials . International Journal of Ambient Energy, Vol.1, No.3, (July 1980), pp. 155–168, ISSN 0143-0750 Lennox, K.P. (1998). Outlast Technologies adapts Space-age technology to keep us comfortable, Technical Textile International, Vol.7, No.7, (July-August 1998), pp. 25- 26, ISSN 0964-5993 Leskovšek, M., Jedrinovic, G. & Stankovic-Elseni, U. (2004). Properties of propylene fibres with incorporated microcapsules, Acta Chimica Slovenica, Vol.51, No.4, (December 2004), pp.699-715, ISSN 1318-0207 Li, W.D. & Ding, E.Y. (2007a). Preparation and characterization of a novel solid–liquid PCM: Butanediol di-stearate. Material Letters, Vol.61, No.7, (March 2007), pp. 1526–1528, ISSN 0167-577X Li, W.D. & Ding, E.Y. (2007b). Preparation and characterization of a series of diol di- stearates as phase change heat storage materials. Material Letters, Vol. 61, No.21, (August 2007), pp. 4325–4328, ISSN 0167-577X Li, W., Zhang, X.X., Wang, X.C. & Niu, J.J. (2007). Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content. Materials Chemistry and Physics, Vol.106, No.2-3, (December 2007), pp.437-442, ISSN 0254-0584 Li, Y. & Zhu, Q. (2004). A Model of Heat and Moisture Transfer in Porous Textiles with Phase Change Materials. Textile Research Journal, Vol.74, No.5, (May 2004), pp. 447- 457, ISSN 0040-5175 Liang, C., Lingling, X., Hongbo, S. & Zhibin, Z. (2009). Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Conversion and Management, Vol.50, No.3, (March 2009), pp. 723-729, ISSN 0196-8904 Lottenbach, R. and Sutter, S. (2002). Method for producing temperature-regulating surfaces with phase change material. WO Patent 02095314 Loxley, A. & Vincent, B. (1998). Preparation of Poly(methylmethacrylate) Microcapsules with Liquid Cores. Journal of Colloid and Interface Science, Vol.208, No.1, (December 1998), pp. 49-62, ISSN 0021-9797 Ma, S., Song, G., Li, W., Fan, P. & Tang, G. (2010). UV irradiation-initiated MMA polymerization to prepare microcapsules containing phase change paraffin. Solar Energy Materials and Solar Cells , Vol.94, No.10, (October 2010), pp. 1643-1647, ISSN 0927-0248 Mehling, H. & Cabeza, L.F. (2008). Heat and cold storage with PCM – An up date to introduction into basics and applications, Springer, ISBN 978-3-540-68556-2 Métivaud, V. (1999). Systemes multicomposants d'alcanes normaux dans la gamme C14H30–C25H52: aliances structurales et stabilite des echantilons mixtes. Applications pour la protection thermique d'instalations de telecomunications et de circuits optoelectroniques, European thesis, Université Bordeaux I, France. Mills, A., Farid, M., Selman, J.R. & Al-Hallaj, S. (2006). Thermal conductivity enhancement of phase change materials using a graphite matrix, Applied Thermal Engineering, Vol.26, No.14-15, (October 2006), pp. 1652-1661, ISSN 1359-4311 Nelson, G. (2001). Microencapsulation in textile finishing. Review of Progress in Coloration and Related Topics, Vol.31, No.1, (June 2001), pp. 57-64, ISSN 1478-4408 Nelson, G. (2002). Application of microencapsulation in textiles. International Journal of Pharmaceutics , Vol.242, No.1-2, (August 2002), pp.55-62, ISSN 0378-5173 Onder, E., Nihal, S. & Cimen E. (2008). Encapsulation of phase change material by complex coacervation to improve thermal performances of woven fabrics. Thermochimica Acta, Vol.467, No.1-2, (January 2008), pp. 63-72, ISSN 0040-6031 Pause, B.H. (1994). Investigation of the heat insulation of protective textiles with microencapsulated PCM. Techtextil-Symposium, 245, pp. 1-9 Pause, B.H. (1995). Development of heat and cold membrae structures with phase change material. Journal of Coated Fabrics, Vol.25, No.7, (July 1995), pp.59-68, ISSN 0093- 4658 Pause, B.H. (2001). Interactive thermal insulating system having a layer treated with a coating of energy absorbing phase change material adjacent a layer of fibers containing energy absorbing phase change material. US Patent 6,217, 993, available from http://patft.uspto.gov/ Pushaw, R.J. (1997). Coated skived foam and fabric article containing energy absorbing phase change material. US Patent 5, 677, 048, available from http://patft.uspto.gov/ Roy, S.K. & Sengupta, S. (1991). An evaluation of phase change microcapsles for use in enhanced heat transfer fluids. International Communications in Heat and Mass Transfer , Vol.18, No.4, (July-August 1991), pp. 495-507, ISSN 0735-1933 Salaün, F., Devaux, E., Bourbigot & S., Rumeau, P. (2008a). Preparation of multinuclear microparticles using a polymerization in emulsion process. Journal of Applied Polymer Science, Vol.107, No.4, (February 2008), pp. 2444-2452, ISSN 0021-8995 Salaün, F., Devaux, E., Bourbigot, S. & Rumeau, P. (2008b). Development of a precipitation method intended for the entrapment of hydrated salt. Carbohydrate Polymers, Vol.73, No.2, (July 2008), pp. 231-240, ISSN 0144-8617 Salaün, F., Devaux, E., Bourbigot, S., Rumeau, P., Chapuis, P.O, Saha, S.K., & Volz, S. (2008c). Polymer nanoparticles to decrease thermal conductivity of phase change materials. Thermochimica Acta, Vol.477, No.1-2, (October 2008), pp. 25-31, ISSN 0040- 6031 Salaün, F., Devaux, E., Bourbigot, S. & Rumeau, P. (2009a). Application of Contact Angle Measurement to the Manufacture of Textiles containing Microcapsules. Textile Research Journal, Vol.79, No.13, (September 2009), pp.1202-1212, ISSN 0040-5175 Salaün, F., Devaux, E., Bourbigot, S. & Rumeau, P. (2009b). Influence of process parameters on microcapsules loaded with n-hexadecane prepared by in situ polymerization, Chemical Engineering Journal, Vol.155, No. 1-2, (December 2009), pp. 457-465, ISSN 1385-8947 Salaün, F., Devaux, E., Bourbigot, S. & Rumeau, P. (2010a). Development of Phase Change Materials in Clothing Part I: Formulation of Microencapsulated Phase Change. Textile Research Journal, Vol.80, No.3, (February 2010), pp.195-205, ISSN 0040-5175 Salaün, F., Devaux, E., Bourbigot, S. & Rumeau, P. (2010b). Influence of the solvent on the microencapsulation of an hydrated salt. Carbohydrate Polymers, Vol.79, No.4, (March 2010), pp. 964-974, ISSN 0144-8617 Salaün, F., Devaux, E., Bourbigot, S. & Rumeau, P. (2010c). Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochimica Acta , Vol.506, No.1-2, (July 2010), pp. 82-93, ISSN 0040-6031 Salaün, F., Bedek, G., Devaux, E. & Dupont, D. (2011). Influence of the washings on the thermal properties of polyurea-urethane microcapsules containing xylitol to provide a cooling effect. Materials Letters, Vol.65, No.2, (January 2011), pp.381-384, ISSN 0167-577X Sánchez, L., Sánchez, P., de Lucas, A., Carmona, M. & Rodriguez J.F. (2007). Microencapsulation of PCMs with a polystyrene shell. Colloid polymer science, Vol.285, No. 12, (July 2007), pp.1377-1385, ISSN 0303-402X Sánchez-Silva, L., Rodriguez, J.F., Romero, A., Borreguero, A.M., Carmona, M. & Sánchez P. (2010). Microencapsulation of PCMs with a styrene-methyl methacrylate copolymer shell by suspension-like polymerisation. Chemical Engineering Journal, Vol.157, No.1, (February 2010), pp. 216-222, ISSN 1385-8947 Sánchez, P., Sanchez-Fernandez, M.V., Romero, A., Rodriguez, J.F. & Sanchez-Silva, L. (2010) Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochimica Acta, Vol.498, No.1-2, (January 2010), pp. 16-21, ISSN 0040-6031 Sari, A. (2003). Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications. Energy Conversion and Management, Vol.44, No.14, (August 2003), pp. 2277-2287, ISSN 0196-8904 Sari, A. (2005). Eutectic mixtures of some fatty acids for low temperature solar heating applications: Thermal properties and thermal reliability. Applied Thermal Engineering, Vol.25, No. 14-15, (October 2005), pp. 2100-2107, ISSN 1359-4311 Sari, A. & Karaipekli, A. (2008). Preparation and thermal properties of capric acid/palmitic acid eutectic mixture as a phase change energy storage material. Materials Letters, Vol.62, No.6-7, (15 March 2008), pp. 903-906, ISSN 0167-577X Sari, A., Biçer, A. & & Karaipekli, A. (2009a). Synthesis, characterization, thermal properties of a series of stearic acid esters as novel solid–liquid phase change materials, Materials Letters, Vol.63, No. 13-14, (May 2009), pp. 1213-1216, ISSN 0167-577X Sari, A., Alkan, C., Karaipekli, A. & Uzun, O. (2009b). Microencapsulated n-octacosane as phase change material for thermal energy storage. Solar Energy, Vol.83, No.10, (October 2009), pp. 1757-1763, ISSN 0038-092X Sari, A., Alkan, C. & Karaipekli, A. (2010). Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage. Applied Energy, Vol.87, No.5, (May 2010), pp. 1529-1534, ISSN 0306-2619 Sarier, N. & Onder, E. (2007a). The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochimica Acta, Vol.452, No.2, (January 2007), pp. 149-160, ISSN 0040-6031 Sarier, N. & Onder, E. (2007b). Thermal characteristics of polyurethane foams incorporated with phase change materials. Thermochimica Acta, Vol.454, No.2, (March 2007), pp. 90-98, ISSN 0040-6031 Shim, H., McCullough, E.A. & Jones, B.W. (2001). Using Phase Change Materials in Clothing. Textile Research Journal, Vol.71, No.6, (June 2001), pp.495-502, ISSN 0040- 5175 Shin, Y., Yoo, D. & Son, K. (2005). Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules. Journal of Applied Polymer Science, Vol.96, No.6, (June 2005), pp. 2005-2010, ISSN 0021-8995. Song, Q., Li, Y., Xing, J., Hu, J.Y. & Marcus, Y. (2007). Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles. Polymer, Vol.48, No.11, (May 2007), pp. 3317-3323, ISSN 0032-3861 Su, J.F., Ren, L. & Wang, L.X. (2005). Preparation and mechanical properties of thermal energy storage microcapsules, Colloid and Polymer Science, Vol.284, No.2, (November 2005), pp. 224–228, ISSN 0303-402X Su, J.F., Wang, L.X. & Ren, L. (2007) Synthesis of polyurethane microPCMs containing n- octadecane by interfacial polycondensation: Influence of styrene-maleic anhydride as a surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.299, No.1-3, (May 2007), pp. 268-275, ISSN 0927-7757 Šumiga, B., Knez, E., Vrtačnik, M., Savec, V.F., Starešinič, M. & Boh, B. (2011). Production of Melamine-Formaldehyde PCM Microcapsules with Ammonia Scavenger used for Residual Formaldehyde Reduction. Acta Chimica Slovenica, Vol.58, No.1, (March 2011), pp.14-25, ISSN 1318-0207 Sundberg, E.J. & Sundberg, D. C. (1993). Morphology development for three-component emulsion polymers: Theory and experiments. Journal of Applied Science, Vol.47, No.7, (February 1993), pp.1277-1294, ISSN 0021-8995 Teixeira, M.I., Andrade, L.R., Farina, M. & Rocha-Leao, M.H.M. (2004). Characterization of short chain fatty acid microcapsules produced by spray drying. Materials Science and Engineering C: Biomimetic and Supramolecular Systems , Vol.24, No.5, (November 2004), pp. 653–65, ISSN 0928-4931 Torza, S. & Mason, S.G. (1970). Three-phase interactions in shear and electrical fields. Journal of colloid and Interface Science, Vol. 33, No.1 (May 1970), pp. 67-83, ISSN 0021-9797 Uddin, M.S., Zhu, H.J. & Hawlader, M.N.A. (2002). Effects of cyclic operation on the characteristics of a microencapsulated PCM storage material. International Journal of Solar Energy , Vol.22, No.3-4, (September-December 2002), pp.105-114, ISSN 0142- 5919 Wang, X., Lu, E., Lin, W., Liu, T., Shi, Z., Tang, R. & Wang, G. (2000). Heat storage performance of the binary systems neopentyl glycol/pentaerythritol and neopentyl glycol/trihydroxy methyl-aminomethane as solid-solid phase change materials. Energy Conversion and Management, Vol.41, No.2, (January 2000), pp. 129-134, ISSN 0196-8904 Yamagishi, Y., Takeuchi, H., Pyatenko, A.T. & Kayukawa, N. (1999). Characteristics of microencapsulated PCM slurry as a heat-tranfer fluid. AIChE Journal, Vol.45, No.4, (April 1999), pp. 696-707, ISSN 0001-1541 You, M., Zhang, X.X., Li, W. & Wang, X.C. (2008) Effects of MicroPCMs on the fabrication of MicroPCMs/polyurethane composite foams. Thermochimica Acta, Vol.472,No.1-2, (June 2008), pp. 20-24, ISSN 0040-6031 You, M., Zhang, X.X., Wang, X.C., Li, W. & Wen, W. (2010). Effects of type and contents of microencapsuled n-alkanes on properties of soft polyurethane foams. Thermochimica Acta, Vol. 500, No.1-2, (March 2010), pp. 69-75, ISSN 0040-6031 Zeng, J., Cao, Z., Yang, D., Xu, F., Sun, L., Zhang, L. & Zhang, X. (2009). Phase diagram of palmitic acid-tetradecanol mixtures obtained by DSC experiments. Journal of Thermal Analysis and Calorimetry , Vol.95 , No.2, ( February 2009), pp. 501-505, ISSN 1388-5150 Zhang, X. (2001). Heat-storage and thermoregulated textiles and clothing, IN: Smart fibres, fabrics and clothing , Tao, pp. 34-58, Woodhead Publishing Ltd., ISBN 1 85573 546 6, Cambridge. Zhang, H. & Wang, X. (2009a). Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation. Solar Energy Materials and Solar Cells, Vol.93, No.8, (August 2009), pp. 1366-1376, ISSN 0927-0248 Zhang, H. & Wang, X. (2009b). Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine- formaldehyde shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.332, No.2-3, (January 2009), pp. 129-138, ISSN 0927-7757 Zhang, H., Wang, X. & Wu, D. (2010). Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance. Journal of Colloid and Interface Science, Vol.343, No.1, (March 2010), pp. 246-255, ISSN 0021-9797 Zhang, X.X., Tao, X.M., Yick, K.L. & Wang, X.C. (2004a). Structure and thermal stability of microencapsulated phase-change materials. Colloid and polymer science, Vol. 282, No.4, (February 2004), pp. 330-336, ISSN 0303-402X Zhang, X.X., Fan, Y.F., Tao, X.M. & Yick, K.L. (2004b). Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Materials Chemistry and Physics , Vol.88, No.2-3, (December 2004), pp. 300-307, ISSN 0254-0584 Zhang, X.X., Fan, Y.F., Tao X.M. & Yick, K.L. (2005a). Crystallization and prevention of supercooling of microencapsulated n-alkanes. Journal of Colloid and Interface Science, Vol.281, No.2, (January 2005), pp. 299-306, ISSN 0021-9797 Zhang, X.X., Wang, X.C., Tao, X.M. & Yick, K.L. (2005b). Energy storage polymer/MicroPCMs blended chips and thermo-regulated fibers. Journal of Materials Science , Vol.40, No.14, (July 2005), pp. 3729-3734, ISSN 0022-2461 Zhang, X.X., Wang, X.C., Tao, X.M. & Yick, K.L. (2006). Structures and Properties of Wet Spun Thermo-regulated Polyacrylonitrile-Vinylidene Chloride Fibers. Textile Research Journal , Vol.76, No.5, (May 2006), pp. 351-359, ISSN 0040-5175 Zou, G.L., Tan, Z.C., Lan, X.Z., Sun, L.X. & Zhang, T. (2004). Preparation and characterization of microencapsulated hexadecane used for thermal energy storage. Chinese Chemical Letters, Vol.15, No.6, (2004), pp. 729–732, ISSN 1001-8417 Zuckerman, J.L., Pushaw, R.J., Perry, B.T. & Wyner, D.M. (1997). Fabric containing anergy absorbing phase change material and method of manufacturing same. US Patent 5, 514,362, available from http://patft.uspto.gov/ Zuckerman, J.L., Pushaw, R.J., Perry, B.T. & Wyner, D.M. (2001). Fabric coating composition containing energy absorbing phase change material. US Patent 6,207,738, available from http://patft.uspto.gov/ [...]... borne in mind when impinging liquid jet cooling is being considered for specific applications (Sarkar & Singh, 2004) Heat Transfer and Thermal Air Management in the Electronics and Process Industries 209 3 Impinging jet heat transfer in the process industries In contrast to the application of impinging jets of cold liquid to cool products, hot air impingement jets are widely used in process industries... dynamics: the finite volume method, Longman, ISBN 0582 21884 5, London, UK Webb, B.W & Ma, C.F (1995) Single phase liquid jet impingement heat transfer, Advances in Heat Transfer, vol 26, (March 1995), pp 105-217, ISSN 0 065 -2717 2 16 Developments in Heat Transfer Wolf, D;, Incropera, F.P & Viskanta, R (1993) Jet Impingement Boiling, Advances in Heat Transfer, vol 23, (March 1993), pp 1-132, ISSN 0 065 -2717... (1995) Liquid jet impingement, Annual Review of Heat Transfer, vol 6, (January 1995), pp 199-270, ISSN 1049-0787 Lyttle, D & Webb, B.W (1994) Air impingement heat transfer at low nozzle spacings, Int J Heat Mass Transfer, vol 37, no 12, (August 1994), pp 168 7- 169 7, ISSN 0017-9310 Martin, H (1977) Heat and mass transfer between impinging gas jets and solid surfaces, Advances in Heat Transfer, vol 13, (March... in energy intensive industries In the electronics industry, inexorable increases in microprocessor performance due to the use of multiple cores on a single chip are creating an enormous challenge for the cooling infrastructure, since almost all of the electrical energy consumed by the chip package is released as heat (Anandan & Ramalingam, 2008) This is particularly relevant to the rapidly increasing... appear to be gaining in popularity since they can offer greater levels of thermal efficiency (Khatir et al., 2011) 3.2.1 CFD modelling of thermal air flows in bread baking ovens CFD modelling is now being increasingly applied to a wide range of different food processes in order to improve product quality and reduce operating costs (Norton & Sun, 212 Developments in Heat Transfer 20 06) Several CFD models... Cold and hot aisle containment strategies Relying on air as the primary heat transfer medium in data centres is becoming increasingly problematical due to inexorable increases in power densities in IT equipment The reduced effectiveness of using air to cool servers is promoting much greater interest in a range of promising alternative technologies based on direct liquid loop cooling, such as dielectric... impingement jets to transfer heat into products in order to, in the former cases, vaporise their solvent components, and in the latter cases to bake important food products such as bread, see Figure 3 202 Developments in Heat Transfer Hot air Coated film (a) bread (b) Fig 3 Schematic diagram of forced-convection ovens using hot air impinging jets in the (a) coating and converting and (b) bread baking... consumption in the process industries is also currently an area where a significant amount of research is being conducted Due to the enormous range of heat transfer technologies deployed in the process industries, this chapter focuses on one important heat transfer component of several industrial applications, namely the use of convective heat transfer from impinging air jets within industrial ovens (Martin,... greater attention in the scientific literature This chapter has focussed on one important aspect of this enormous subject, namely convective heat transfer from impinging air jets in forced convection ovens used in the coating, converting and bread baking industries Advances in CFD methods are now being exploited within these industries and have shown, for example, how the required heat flux into products... most common cooling agent, however foam-filled cold plates are increasingly being used for high heat flux cooling applications (Apollonov, 1999, 2000) Air to water heat exchanger Filter Pump Water reservoir Cold plate Electronic module Fig 6 Indirect cooling of electronic modules 2.3.4 Liquid jet impingement cooling Many applications in industry require localised cooling and use impinging liquid jets . aisle containment strategies Relying on air as the primary heat transfer medium in data centres is becoming increasingly problematical due to inexorable increases in power densities in IT equipment are making the achievement of efficient heat transfer and thermal management of crucial importance in energy intensive industries. In the electronics industry, inexorable increases in microprocessor. materials using a graphite matrix, Applied Thermal Engineering, Vol. 26, No.14-15, (October 20 06) , pp. 165 2- 166 1, ISSN 1359-4311 Nelson, G. (2001). Microencapsulation in textile finishing. Review

Ngày đăng: 19/06/2014, 10:20

TỪ KHÓA LIÊN QUAN