1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Đồ án hcmute) applying biofilm hybrid system (anaerobic aerobic) using coral media and microbe lift ind on automobile wastewater treatment

90 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 90
Dung lượng 6,17 MB

Nội dung

MINISTRY OF EDUCATION AND TRAINING HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION CAPSTONE PROJECT ENVIRONMENTAL ENGINEERING TECHNOLOGY APPLYING BIOFILM HYBRID SYSTEM (ANAEROBIC - AEROBIC) USING CORAL MEDIA AND MICROBE-LIFT IND ON AUTOMOBILE WASTEWATER TREATMENT ADVISOR: Dr NGUYEN MY LINH STUDENT: NGUYEN THI KIM XUYEN NGUYEN PHUOC LOC SKL009979 Ho Chi Minh City, July 2017 HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY AND EDUCATION -*** - CAPSTONE PROJECT APPLYING BIOFILM HYBRID SYSTEM (ANAEROBIC - AEROBIC) USING CORAL MEDIA AND MICROBE-LIFT IND ON AUTOMOBILE WASTEWATER TREATMENT STUDENT: NGUYEN PHUOC LOC NGUYEN THI KIM XUYEN SUPERVISOR: NGUYEN MY LINH GVHD: Th.S HUỲNH PHƯỚC SƠN TP Hồ Chí Minh, July/2017 SOCIALIST REPUBLUC OF VIETNAM Independence – Freedom – Happiness *** HCM City, / /2017 MISSION OF GRADUATION THESIS Name: Nguyen Phuoc Loc Student ID: 13150132 Nguyen Thi Kim Xuyen 13150181 Major: Environmental Engineering and Technology Class: 13150CLC Supervisor: Dr Nguyen My Linh Receive date: 01/2017 Submit date: 7/2017 Topic: Applying biofilm hybrid system (Anaerobic – Aerobic) using coral media and Microbe-Lift IND on automobile wastewater treatment Fields: Research Content impletemation - Design a lab-scale model of hybrid (anaerobic – aerobic) using coral media - Use automobile wastewater in Mercedes-Benz company - Evaluate the efficiency of nitrogen, phosphorus, COD, removal of the model during the adaptive phase and operated phase - Evaluate the stability of the model after supplementation with Microbial preparation Microbe-Lift IND HEAD OF ENVIRMONMENT DEPARTMENT SUPERVISOR i SOCIALIST REPUBLIC OF VIETNAM Independence – Freedom – Happiness ******* COMMENT OF SUPERVISOR Name of student: Student ID: Major: Topic: Name of Supervisor: COMMENT Content impletemation & Amount of work: Advantage: Disadvantage: Defense: Yes/No Evaluate of kind: Score: HCM City,……/…… /2017 Supervisor (Sign & write your name) ii SOCIALIST REPUBLIC OF VIETNAM Independence – Freedom – Happiness ******* COMMENT OF REVIEWER Name of student: Student ID: Major: Topic: Name of Reviewer: COMMENT 1.Content impletemation & Amount of work: Advantage: Disadvantage: Defense: Yes/No Evaluate of kind: Score: HCM City, ……/…… /2017 Reviewer (Sign & write your name) iii ACKNOWLEDGEMENTS This thesis could not have been done without the valuable help from many people First and foremost, we want to thank my supervisor, Dr Nguyen My Linh Thanks for all your patience, understanding, help, advices, planning and encouragement throughout the whole period doing thesis graduation Thanks also for giving us the opportunity to be work with you It has been a great inspiration to learn to know your character, both in academic and human terms We would like to send many thanks to Mr Tran Kiet Huy, for providing me with the best time we have ever had at the Mercedes – Benz company Your experience, opinion, view, comments and thoughts have been great and useful It was a great pleasure to be part of the laboratory of Mercedes – Benz company We want to specially mention Huy to open me the doors of practical experiences and some questions gave me when we had the pleasure to discuss several times with you We really appreciate the high standards you have set for me, which we would never have reached without your help A special thank goes to the Ms Dong Thi Tu Anh (Dat Hop Company) and Board of Directors of Mercedes – Benz for their unfailing support We would particularly like to thank All teachers in the Department of High Quality for creating the most favorable conditions for this thesis Moreover, we would like to thank Ms Le Thi Bach Hue for supporting us equipments in laboratory was essential for the success of the thesis Last but no the least, we should say thanks from the deep of our heart to our beloved family, teachers, friends They never ending love, help, and support in so many ways through all this time Thank you so much Ho Chi Minh City, 07/2017 Nguyen Phuoc Loc Nguyen Thi Kim Xuyen iv ABSTRACT In this research, automobile wastewater treatment was performed using the Hybrid system (Anaerobic-Aerobic) with coral media The coral media is not only cheap, available but also gives high efficiency of COD, Total Kjeldahl Nitrogen, and total phosphorus removal The results were analyzed daily The Microbe-Lift IND was added in the last stage of the process to enhance the capacity of the whole system The research was conducted in two phases: adaptive and operative phase During the adaptive phase, operate for weeks to form microfilm on the coral media At the operated phase with divided into three periods corresponding to the organic loading rate of 0.25; and 2.5 kgCOD/m3d In these stages, the efficiency of COD, TKN, TP treatment is high and stable With a COD removal efficiency of 74.1 ± 6.7%; 80.37 ± 12.2%; 88.1 ± 6.4% and TP were 67.35 ± 8.21%; 66.2 ± 4.3%; 58.2 ± 7.7% and TKN is 66.59 ± 9.7%; 70.81 ± 7.7%; 79.39 ± 6.2% relatively in three different organic loading rates Keywords: automobile wastewater treatment, coral media, biofilm kinetic, hybrid system… v TABLE OF CONTENTS MISSION OF GRADUATION THESIS I COMMENT OF SUPERVISOR II COMMENT OF REVIEWER III ACKNOWLEDGEMENTS IV ABSTRACT V TABLE OF CONTENTS VI LIST OF FIGURES VIII LIST OF TABLES IX LIST OF ABBREVIATIONS X PREFACE CHAPTER : INTRODUCTION 1.1 INTRODUCTION OF WASTE WATER PRODUCTION 1.1.1 INTRODUCE THE AUTOMOBILE INDUSTRY 1.1.2 MAIN STAGES OF WASTEWATER GENERATION 1.1.3 CURRENT MERCEDES – BENZ AUTOMOBILE WASTEWATER TREATMENT TECHNOLOGY SYSTEM DIAGRAM .9 1.2 INTRODUCTION TO WASTEWATER TREATMENT TECHNOLOGY 10 1.2.1 MECHANICAL METHOD 10 1.2.2 PHYSICAL AND CHEMICAL METHODS 10 1.2.3 BIOLOGICAL METHOD .10 1.3 THEORETICAL BASIS OF AEROBIC BIOLOGICAL PROCESS .10 1.3.1 AEROBIC BIOLOGICAL PROCESS 10 1.3.2 FACTORS AFFECTING AEROBIC BIOLOGICAL PROCESSES 11 1.3.3 SUSPENDED GROWTH PROCESS - ACTIVATED SLUDGE 12 1.3.4 THE GROWTH OF BIOFILM .14 1.4 THEORETICAL BASIS OF ANAEROBIC BIOLOGICAL PROCESS 17 1.4.1 ANAEROBIC BIOLOGICAL PROCESS 17 1.5 INTRODUCTION TO HYBRID TECHNOLOGY AND HYBRID TECHNOLOGY APPLICATION IN BIOLOGY WASTEWATER TREATMENT ……………………………………………………………………………… 20 1.5.1 A SUMMARY OF HYBRID BIOLOGY 20 1.5.2 THE ANAEROBIC HYBRID SYSTEM COMBINES AEROBIC 21 1.5.2.1 UANF and UAF hybrid systems 21 1.5.2.2 The hybrid system combines anaerobic and aerobic tube 21 1.5.2.3 Anaerobic and aerobic hybrid system – SAA .23 1.5.2.4 Hybrid partition system .24 1.5.2.5 MBR hybrid system combines anaerobic – aerobic 25 vi 1.6 THE REMOVAL OF NITROGEN AND PHOSPHORUS BY BIOLOGICAL METHOD 25 1.6.1 MECHANISM OF NITROGEN TREATMENT .25 1.6.2 MECHANISM OF PHOSPHORUS TREATMENT 27 CHAPTER : METHOD OF RESEARCH .29 2.1 STUDY DIAGRAM 29 2.2 MATERIAL RESEARCH 30 2.2.1 CAR MANUFACTURING WASTEWATER .30 2.2.2 ACTIVATED SLUDGE AND CORAL MEDIA 31 2.2.3 MICROBIAL PREPARATION .31 2.3 MODEL RESEARCH 33 2.3.1 MODEL DESIGN 33 2.4 SEQUENCE OF EXPERIMENT 34 2.4.1 ADAPTIVE PHASE .34 2.4.2 OPERATIVE PHASE 34 2.5 SAMPLING AND ANALYSIS 35 CHAPTER : RESULTS AND DISCUSSION .37 3.1 ADAPTIVE PHASE 37 3.2 OPERATIVE PHASE 38 3.2.1 THE CHANGE OF MLSS 38 3.2.2 REMOVAL EFFICIENCY OF COD .40 3.2.3 REMOVAL EFFICIENCY OF TP 43 3.2.4 REMOVAL EFFICIENCY OF TKN .45 3.2.5 REMOVAL EFFICIENCY OF BOD5 .47 3.2.6 THE CHANGE OF PH 48 3.2.7 EFFECT OF PH TO PHOSPHORUS REMOVAL IN ANAEROBIC 51 3.2.8 EFFICIENCY OF MICROBE-LIFT IND 52 3.2.8.1 The relationship between TP decrease and Microbial preparation MicrobeLift IND .53 3.2.8.2 The relationship between microbial preparation Microbe-Lift IND and % COD 54 3.2.9 THE CHANGING OF CONCENTRATION IN ALL SAMPLING TAPS 55 CHAPTER : CONCLUSION AND FUTURE WORK 58 4.1 CONCLUSION .58 4.2 FUTURE WORK 58 REFERENCES 60 APPENDIX .62 vii LIST OF FIGURES Figure 1.1: The process of producing and assembling cars Figure 1.2: Wastewater generation stages in the production phase Figure 1.3: Mercedes – Benz automobile wastewater treatment technology system diagram Figure 1.4: Biofilm construction .16 Figure 1.5: The stages of anaerobic digestion 18 Figure 1.6: Tubular Hybrid model 21 Figure 1.7: Hybrid model SAA [Y.J Chan et al., 2009] 23 Figure 1.8: Biomedical hybrid model [Y.J Chan et al., 2009] 24 Figure 1.9: Combined MBR model - Aerobic [Y.J Chan et al., 2009] .25 Figure 1.10: Schematic representation of concentration profiles for EBPR under anaerobic - aerobic conditions 28 Figure 2.1: Diagram of research method 29 Figure 2.2: Automobile wastewater 30 Figure 2.3: Coral media 31 Figure 2.4: Microbial preparation Microbe-Lift IND .32 Figure 2.5: Experimental model in drawing .33 Figure 2.6: Experiment model in practicing .33 Figure 2.7: Diagram in Operative phase 35 Figure 3.1: Coral media before and after use for treatment 38 Figure 3.2: Scanning Electron Micrographs of attached microorganism 39 Figure 3.3: The changing of MLSS in second tanks 39 Figure 3.4: Influent and effluent concentrations and removal efficiencies of COD vs time in the whole experiment (three stages) 41 Figure 3.6: The release of phosphorus in three stages 45 Figure 3.7: Influent and effluent concentrations and removal efficiencies of TKN vs time in the whole experiment 46 Figure 3.8: Influent, Anaerobic, Aerobic, Effluent concentrations and removal efficiencies of BOD5 vs time in the whole experiment 47 Figure 3.9: The change of input and output pH 49 Figure 3.10: The change of pH in Anaerobic 50 Figure 3.11: The change of pH in Aerobic .51 Figure 3.12: Relationship between pH and P release 52 Figure 3.13:The relationship between TP decrease and dose of Microbe-Lift IND 53 Figure 3.14: The relationship between %COD and dose of Microbe-Lift IND .54 viii 04/05 05/05 06/05 08/05 09/05 10/05 11/05 12/05 13/05 15/05 16/05 17/05 18/05 19/05 20/05 22/05 23/05 24/05 25/05 26/05 27/05 29/05 30/05 31/05 01/06 02/06 03/06 05/06 06/06 07/06 08/06 09/06 10/06 12/06 13/06 14/06 15/06 OLR2 = kgCOD/m3.d OLR3 = 2.5 kgCOD/m3.d 286 310 304 870 901 923 950 965 1002 1116 955 1187 813 1157 1109 1274 1189 1258 942 1102 1054 1511 1253 878 1352 2011 2025 1228 1189 2873 1649 1301 882 1243 1457 1496 2882 168 60 211 581 621 709 611 598 622 762 693 711 462 721 753 810 720 823 542 783 801 814 798 643 603 1426 1531 722 646 2031 1128 939 623 732 834 915 1873 113 34 124 410 511 432 411 424 487 532 506 492 287 535 485 663 579 579 312 384 523 764 623 491 398 753 887 512 478 1304 778 812 411 512 621 689 1332 76 60 55 288 322 315 289 275 271 308 289 315 121 225 158 124 87 112 0 57 345 289 174 102 307 487 212 63 529 295 333 90 209 211 233 311 73.43 80.6 81.91 66.9 64.26 65.87 69.58 71.5 72.95 72.4 69.74 73.46 85.12 80.55 85.75 90.27 92.68 91.1 100 100 94.59 77.17 76.94 80.18 92.46 84.73 75.95 82.74 94.7 81.59 82.11 74.4 89.8 83.19 85.52 84.43 89.21 ii 16/06 17/06 19/06 20/06 21/06 22/06 23/06 24/06 26/06 27/06 28/06 29/06 30/06 01/07 03/07 04/07 05/07 06/07 07/07 08/07 10/07 11/07 2935 2704 2615 2394 2038 2219 2301 2276 2304 2415 2003 2032 2321 1856 2119 1890 1934 2228 2219 2225 2374 2458 2108 1843 1987 1763 1056 1554 1546 1276 1234 1325 1267 1632 1112 1451 1127 942 1106 1283 1187 1105 1462 1532 1345 1238 1365 1187 698 1002 1003 867 723 901 834 1394 894 1008 743 589 763 705 732 687 927 1006 332 232 487 329 212 194 143 164 179 231 87 48 41 212 134 123 226 244 145 257 345 88.69 91.42 81.38 86.26 89.6 91.26 93.79 92.79 92.23 90.43 95.66 97.22 100 97.79 90 92.91 93.64 89.86 89 93.48 89.17 85.96 TP Date 11/04 12/04 13/04 14/04 15/04 17/04 18/04 19/04 20/04 21/04 22/04 OLR OLR1 = 0.25 kgCOD/m3.d Influent Anaerobic Aerobic Effluent Efficiency 28.2 27.3 19.2 12.4 56.03 34.7 30.2 23.7 14.7 57.64 36.2 35.2 17.4 13.8 61.88 52 50.5 39.2 23.1 55.58 47.3 43.2 26.9 19.9 57.93 42 37.5 34.2 19.4 53.81 38.2 36.2 21.7 15.1 60.47 54.2 47.3 31.8 16.3 69.93 61.4 60.3 31.8 16.9 72.48 45.2 39.6 23.1 15.2 66.37 36.9 35.1 17.3 11.7 68.29 iii 24/04 25/04 26/04 27/04 28/04 29/04 03/05 04/05 05/05 06/05 08/05 09/05 10/05 11/05 12/05 13/05 15/05 16/05 17/05 18/05 19/05 20/05 22/05 23/05 24/05 25/05 26/05 27/05 29/05 30/05 31/05 01/06 02/06 03/06 05/06 OLR2 = kgCOD/m3.d OLR3 = 2.5 kgCOD/m3.d 37.1 32.2 39.4 41.8 32.5 26.7 29.8 37.3 37.9 34.2 87.1 90.2 102.8 87.8 91 104.1 79.8 89.7 101.2 87.3 93.6 82.4 98.5 97.6 107.2 91.9 83.3 96.9 315.7 262.8 279.4 245.7 255.8 265.7 162.4 35.2 28.1 37.2 40.2 31.9 21.9 27 36.2 34.2 32.1 80.2 87.7 99.2 86.2 89 98.7 70.2 85.5 99.9 84.9 89.7 78.1 97.4 95.2 106.2 85.1 81.1 94.9 315.2 261.9 278.2 240.2 249.9 261.4 159.2 23.9 19.7 19.2 22 15.6 12.4 17.9 23.7 14.8 16.4 42.8 42.9 50.2 43.5 36.8 39.2 29.6 31.2 52.1 47 61.2 49.2 54.2 63 50.5 49.7 57.2 34.9 205.2 200.7 174.3 173.8 150.6 199.3 129.7 12.4 10.2 9.1 8.4 10.2 7.9 8.5 10.2 8.1 6.7 32.9 29.8 34.7 23.5 30.5 30.2 25.3 24 31.6 29.4 29 26.2 36.2 37 45.2 31.2 33.7 35.8 182.3 135.2 143.8 117.6 109.4 125.3 66.5 66.58 68.32 76.9 79.9 68.62 70.41 71.48 72.65 78.63 80.41 62.23 66.96 66.25 73.23 66.48 70.96 68.3 73.24 68.77 66.32 69.02 68.2 63.25 62.09 57.84 66.05 59.54 63.05 42.26 48.55 48.53 52.14 57.23 52.84 59.05 iv 06/06 07/06 08/06 09/06 10/06 12/06 13/06 14/06 15/06 16/06 17/06 19/06 20/06 21/06 22/06 23/06 24/06 26/06 27/06 28/06 29/06 30/06 01/07 03/07 04/07 05/07 06/07 07/07 08/07 10/07 11/07 207.3 192.6 174.7 202.5 236.7 198.6 230.9 290.2 184.2 301.8 248.2 268.1 201.2 320.4 180.8 190.2 169.2 181 202.1 187.2 194.5 220.2 190.9 161.2 177.4 201.8 220.2 186.2 171.8 145.3 192.3 206.9 191 174 201.9 229.2 183.4 210.2 289.1 181.1 299.7 231.9 299.7 199.1 319.2 172 190.7 158.9 180.7 219.6 179.7 184.8 223.1 171.3 149.1 176.4 199.3 230.4 179.4 167.2 139.2 166.6 100.3 121.8 132.9 143.5 181.4 125.8 140.2 192.3 103.7 201.4 115.9 162.8 145.3 180.9 88.8 91.2 69.8 78.2 98.1 99.9 91 119.8 101.4 119.8 143 129.1 107.4 103.9 101.8 98.7 84.4 97.4 89.3 90.2 101.2 103.2 98 98.7 149.4 90.2 141.2 98.7 98.7 109.2 140.6 79.2 63.9 59.8 55.8 60.2 61.9 69.1 71.2 70.1 65.4 69.2 63.3 61.4 63.8 62 61.6 64.7 53.01 53.63 48.37 50.02 56.4 50.65 57.25 48.52 51.03 53.21 60.23 63.19 45.73 56.12 56.19 66.4 64.66 69.17 70.21 66.93 64.47 67.67 63.28 59.43 60.99 68.63 72.12 65.74 63.91 57.6 66.35 v TKN Date 11/04 12/04 13/04 14/04 15/04 17/04 18/04 19/04 20/04 21/04 22/04 24/04 25/04 26/04 27/04 28/04 29/04 03/05 04/05 05/05 06/05 08/05 09/05 10/05 11/05 12/05 13/05 15/05 16/05 17/05 18/05 19/05 20/05 OLR OLR1 = 0.25 kgCOD/m3.d OLR2 = kgCOD/m3.d Influent 25 22.3 27 20.5 13.8 21.3 15 22.1 22.2 21.7 18.5 8.1 16.9 24.6 24.2 21.37 11.91 8.6 13.8 22 12.37 37.1 41.22 33.9 33.5 44.6 31.9 26.9 32.25 33.4 40.8 44.2 32.96 Anaerobic 18.4 17 19.3 15.3 10.6 11.9 11 18.4 16.5 18 11.2 5.6 10.4 20 15.8 16.57 7.98 3.6 5.6 17.4 6.2 23.7 31.37 26.4 24.9 33.4 24.3 23.9 27.24 24.8 27 34.7 22.6 Aerobic 16.7 15.2 12.1 10.7 6.4 8.2 7.7 14.4 13.3 7.7 4.8 5.4 13.9 10.8 12.53 6.54 5.9 3.9 9.1 5.51 14.1 21.5 17.4 18.3 21.8 18.5 13.9 21.9 13 17.9 22.3 12.51 Effluent 10 12 7.1 6.5 4.9 5.8 4.7 7.4 9.1 8.73 5.5 2.3 3.6 12.6 9.6 8.25 4.78 2.4 2.4 6.7 2.01 12.9 16.46 12 11 13 14.1 7.2 11.3 9.5 12.6 11.5 5.91 Efficiency 60 46.19 73.7 68.29 64.49 72.77 68.67 66.52 59.01 59.77 70.27 71.6 78.7 48.78 60.33 61.39 59.87 72.09 82.61 69.55 83.75 65.23 60.07 64.6 67.16 70.85 55.8 73.23 64.96 71.56 69.12 73.98 82.07 vi 22/05 23/05 24/05 25/05 26/05 27/05 29/05 30/05 31/05 01/06 02/06 03/06 05/06 06/06 07/06 08/06 09/06 10/06 12/06 13/06 14/06 15/06 16/06 17/06 19/06 20/06 21/06 22/06 23/06 24/06 26/06 27/06 28/06 29/06 30/06 OLR3 = 2.5 kgCOD/m3.d 36 30.2 41.1 30.3 39.9 40 65 53.4 83 55 63.8 71.3 62.4 81.1 51.7 42.2 62.4 68.1 64.6 54.2 71.37 44.2 52.2 53.7 61.5 55 57.4 54 58 61.7 65 61.3 60.6 63.6 65.6 25 26.4 30.9 23.6 31 28.2 48.4 41.3 44.1 31.4 41.6 32 41 51.9 32.4 23.5 37.6 35.6 43 24.7 41.46 28 32.1 30.2 40.5 31.5 34.2 32.4 33.1 41.4 40.2 38.4 36.3 40.2 41.9 14.8 16.5 18.5 16.5 19.3 19.9 31 28 15 22.2 14.2 20.5 16.9 17.3 21.1 15 13.5 16 25.8 17.7 22.53 20.8 24.5 22.7 29.8 23.6 24.7 16.9 24 30.1 32.7 28.4 26.8 26.7 28.5 5.4 9.2 13.2 9.1 6.9 23 12.6 10.5 17.1 11.9 15.8 11.7 15.4 14.73 7.1 10 12.3 22.6 13.4 17.25 13.6 11.2 13.5 12.1 11 9.5 6.8 12.1 15.4 14.5 11.7 7.9 18 17.1 85 69.54 67.88 73.6 77.19 82.75 64.62 76.4 87.35 68.91 81.35 77.84 81.25 81.01 71.51 83.18 83.97 81.94 65.02 75.28 75.83 69.23 78.54 74.86 80.33 80 83.45 87.41 79.14 75.04 77.69 80.91 86.96 71.7 73.93 vii 01/07 03/07 04/07 05/07 06/07 07/07 08/07 10/07 11/07 73 77 72.3 75.9 77 68 69.1 67.5 66.3 45.6 44.2 42.6 43 44.4 38.7 36.7 35.2 40.5 27.9 26.3 28.6 29.1 25.5 25.3 24 22.6 21.5 12.8 13 12.9 10.5 13.3 8.5 10.1 9.2 82.47 83.12 82.16 86.17 82.73 86.76 87.7 85.04 86.12 pH Date Influent Anaerobic Aerobic Effluent 11/04 7.3 7.2 7.5 7.7 12/04 7.5 7.2 7.8 13/04 7.5 7.1 7.7 7.5 14/04 7.4 7.5 7.8 7.6 15/04 7.6 7.4 7.5 7.4 17/04 6.8 6.6 6.4 6.9 18/04 6.9 6.7 6.7 19/04 7.1 6.8 20/04 7.2 7.8 7.6 7.3 21/04 7.1 7.6 7.7 7.4 7.1 6.7 6.5 6.7 24/04 7.4 7.5 7.9 7.5 25/04 7.6 8.1 26/04 7.2 7.4 7.2 27/04 7.4 7.2 7.2 28/04 6.5 6.3 6.9 7.1 29/04 6.8 6.9 7.2 7.3 03/05 6.8 6.8 04/05 7.3 6.8 7.2 05/05 7.4 7.2 7 06/05 7.5 6.8 7.2 7.4 22/04 OLR OLR1 = 0.25 kgCOD/m3.d viii 08/05 7.2 7.8 8.3 09/05 6.8 7.8 8.3 8.1 10/05 7.8 7.8 7.9 11/05 7.9 7.0 7.2 7.4 12/05 7.1 6.8 7.5 7.7 13/05 7.4 7.1 7.3 15/05 7.7 7.6 7.4 16/05 6.5 6.7 6.8 7.3 7.4 6.8 7.4 7.4 6.7 6.4 7.1 7.4 19/05 6.9 6.7 6.8 6.7 20/05 6.8 6.7 7.6 7.4 22/05 7.1 6.7 7.2 7.1 23/05 7.5 7.5 7.4 7.8 24/05 7.4 7.2 7 25/05 7.3 7.1 7.3 7.2 26/05 7.1 7.2 6.8 27/05 7.1 6.8 7 29/05 7.2 6.5 6.8 7.2 30/05 7.5 7.5 7.8 7.1 31/05 7.3 7.6 6.8 7.4 01/06 7.7 7.3 7.5 02/06 7.5 7.3 7.2 03/06 6.9 6.5 6.8 6.7 6.4 6.6 7.1 7.1 7 7.3 07/06 6.6 6.9 7.4 08/06 7.3 7.3 7.5 09/06 7.5 7.5 7.1 10/06 7.1 6.7 7.1 7.3 12/06 6.9 7.4 13/06 6.9 6.9 7.2 7.2 17/05 18/05 05/06 06/06 OLR2 = kgCOD/m3.d OLR3 = 2.5 kgCOD/m3.d ix 14/06 7.2 7.1 7.4 7.5 15/06 7.3 7.1 16/06 7.1 7.4 7.3 7.2 17/06 7.3 7.5 7.3 7.4 19/06 7.5 7.2 7.4 7.7 20/06 7.2 7.1 21/06 7.3 7.1 7.4 7.5 22/06 7.4 7.5 7.5 7.6 23/06 7.4 7.7 7.6 7.5 24/06 7.3 7.5 7.5 7.7 26/06 7.2 7.4 7.4 7.4 27/06 7.1 7 7.3 28/06 7.2 7 29/06 7.3 7.1 7.2 30/06 6.8 7.1 01/07 6.9 6.9 7.2 7.2 03/07 6.8 7.3 04/07 7.3 7.3 7.5 05/07 7.2 7.1 7.3 7.4 06/07 7.4 7.3 7.4 7.7 07/07 7.5 7.2 7.6 7.8 08/07 7.5 7.3 7.5 7.6 10/07 7.4 7.5 7.3 7.5 11/07 7.2 7.1 7.4 7.4 MLSS Date OLR 11/04 12/04 13/04 14/04 OLR1 = 0.25 kgCOD/m3.d Anaerobic Aerobic 2031 2426 2086 2463 2167 2426 2086 2176 x 15/04 2117 2389 17/04 2173 2870 18/04 2086 2657 19/04 2451 2620 20/04 2117 2926 21/04 2228 2426 22/04 2481 2926 24/04 2844 3256 25/04 2911 3467 26/04 2578 3533 27/04 2790 3815 28/04 2617 2426 29/04 2637 2589 03/05 2215 2867 04/05 2741 3256 05/05 3237 3278 06/05 2904 3722 08/05 2437 2867 09/05 2800 2378 10/05 2400 2933 11/05 2533 2633 12/05 2674 2911 13/05 2904 3300 15/05 3333 3900 3104 3211 17/05 3237 3600 18/05 3037 3489 19/05 2904 3000 20/05 2815 2678 22/05 2170 2589 23/05 2333 3467 24/05 2667 3900 16/05 OLR2 = kgCOD/m3.d xi 25/05 2904 3878 26/05 2570 3700 27/05 2504 3856 29/05 2378 3189 30/05 2437 2633 31/05 2674 2867 01/06 2570 2911 02/06 2407 3189 03/06 2778 2978 05/06 2207 2678 06/06 2644 2956 07/06 2341 3467 08/06 2378 3189 09/06 2548 2678 10/06 2741 2956 12/06 2978 3833 13/06 2778 3533 3141 3511 15/06 3185 3233 16/06 2378 2933 17/06 2541 3211 19/06 2111 2656 20/06 2911 3533 21/06 3244 4133 22/06 3578 3833 23/06 3711 3811 24/06 3415 3533 26/06 3548 3789 27/06 3719 3444 28/06 3444 4089 29/06 3111 4389 30/06 3044 4133 14/06 OLR3 = 2.5 kg COD/m3.d xii 01/07 3415 4089 03/07 3511 4733 04/07 3852 4133 05/07 3319 4433 06/07 3044 3811 07/07 3481 3833 08/07 3681 4000 10/07 2881 3700 11/07 3859 3811 APPENDIX II: RESULTS OF EXPERIMENT ON TEST IN ALL VALVE COD Date OLR Influent Val K1 Val K2 Val K3 Val H1 Val H2 Effluent 13/04 223 181 152 134 119 89 50 204 178 154 132 101 86 60 237 204 173 151 138 112 65 04/05 286 212 195 168 142 113 76 11/05 950 862 738 611 525 411 289 813 678 591 462 355 287 121 25/05 942 761 612 542 445 312 01/06 1352 711 655 603 576 398 102 08/06 1649 1467 1382 1128 973 778 295 15/06 2882 2434 2176 1873 1654 1332 311 2219 1989 1723 1554 1385 1002 194 29/06 2032 1854 1724 1632 1411 1094 48 06/07 2228 1845 1645 1283 974 705 226 11/07 2458 2005 1743 1532 1326 1006 345 20/04 27/04 18/05 22/06 OLR1 OLR2 OLR3 xiii TP Date OLR 13/04 Influent Val K1 Val K2 Val K3 Val H1 Val H2 Effluent 36.2 32.3 33.1 35.2 19.2 17.4 13.8 61.4 59.3 58.2 60.3 31.8 29.1 16.9 41.8 38.9 39.2 40.2 23.2 22 8.4 04/05 37.3 33.1 35.8 36.2 31.4 23.7 10.2 11/05 87.8 84.9 85.1 86.2 47.2 43.5 23.5 87.3 86.2 85.4 84.9 54.2 47 29.4 25/05 91.9 88.7 88.2 85.1 54.2 49.7 31.2 01/06 279.4 271.9 278 278.2 194.3 174.3 143.8 08/06 192.6 182 187.9 191 142.3 121.8 89.3 15/06 184.2 161.2 169.3 181.1 152.3 103.7 90.2 180.8 158.9 164.7 172 109.8 88.8 79.2 29/06 194.5 172.3 179.2 184.8 102.5 91 69.1 06/07 220.2 187.7 212.9 230.4 192.3 107.4 61.4 11/07 192.3 164.2 156.1 166.6 102.1 84.4 64.7 20/04 27/04 18/05 22/06 OLR1 OLR2 OLR3 TKN Date OLR 13/04 Influent Val K1 Val K2 Val K3 Val H1 Val H2 Effluent 27 22.2 20 19.3 16.5 12.1 7.1 22.2 19.1 17 16.5 15.2 14.4 9.1 24.2 19.9 17 15.8 11.7 10.8 9.6 04/05 13.8 11.9 11.5 5.6 4.2 3.9 2.4 11/05 33.5 32.8 29.7 24.9 21.9 18.3 11 40.8 38.6 32.3 27 18.2 17.9 12.6 25/05 30.3 27.4 25.1 23.6 21.4 16.5 01/06 83 74 56 44.1 43 15 10.5 08/06 51.7 39.9 37.7 32.4 21.1 18.9 14.73 15/06 54.2 39.9 35 24.7 20.6 17.7 13.4 54 48 38.4 32.4 26.9 16.9 6.8 29/06 63.6 51.6 49.3 40.2 34.2 26.7 18 06/07 77 62 54.2 44.4 36.8 25.5 13.3 11/07 66.3 54.3 47.8 40.5 33.2 21.5 9.2 20/04 27/04 18/05 22/06 OLR1 OLR2 OLR3 xiv APPENDIX III: EQUIPMENTS USED IN MODEL No Machine Digital Pump Flow rate: liter/hour wastewater Brand: HANNA model BL 5-2 Made in Rumania Valve K1, K2, K3, H1, H2 Type: uPVC D = 21 mm Made in Viet-Nam Aeration machine Flow rate: 35 liter/min Brand: Hailea ACO-208 16W Made in China Aeration machine Flow rate: liter/min Brand: VIPSUN FISH model VS-648 Made in China Pump for return activated sludge Flow rate: 10,7 liter/h Brand: Pulsafeeder Series 100 & 150 – Model X068-XB Made in USA Picture xv S K L 0

Ngày đăng: 25/09/2023, 08:44

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w