1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Eurocode 2 04 pt sl 001

6 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 209,68 KB

Nội dung

Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001 Eurocode 2 04 pt sl 001

Software Verification PROGRAM NAME: REVISION NO.: SAFE EXAMPLE Eurocode 2-04 PT-SL-001 Post-Tensioned Slab Design PROBLEM DESCRIPTION The purpose of this example is to verify the slab stresses and the required area of mild steel strength reinforcing for a post-tensioned slab A one-way simply supported slab is modeled in SAFE The modeled slab is 254 mm thick by 914 mm wide and spans 9754 mm as shown in shown in Figure Prestressing tendon, Ap Mild Steel, As 229 mm 254 mm 25 mm Length, L = 9754 mm 914 mm Section Elevation Figure One-Way Slab EXAMPLE Eurocode 2-04 PT-SL-001 - Software Verification PROGRAM NAME: REVISION NO.: SAFE A 254 mm wide design strip is centered along the length of the slab and has been defined as an A-Strip B-strips have been placed at each end of the span, perpendicular to Strip-A (the B-Strips are necessary to define the tendon profile) A tendon with two strands, each having an area of 99 mm2, was added to the AStrip The self weight and live loads have been added to the slab The loads and post-tensioning forces are as follows: Loads: Dead = self weight, Live = 4.788 kN/m2 The total factored strip moments, required area of mild steel reinforcement and slab stresses are reported at the midspan of the slab Independent hand calculations were compared with the SAFE results and summarized for verification and validation of the SAFE results GEOMETRY, PROPERTIES AND LOADING Thickness Effective depth Clear span T, h = d = L = 254 229 9754 mm mm mm Concrete strength Yield strength of steel Prestressing, ultimate Prestressing, effective Area of Prestress (single strand) Concrete unit weight Modulus of elasticity Modulus of elasticity Poisson’s ratio f 'c fy fpu fe Ap wc Ec Es ν = = = = = = = = = 30 400 1862 1210 198 23.56 25000 200,000 MPa MPa MPa MPa mm2 KN/m3 N/mm3 N/mm3 Dead load Live load wd wl = = self 4.788 KN/m2 KN/m2 TECHNICAL FEATURES OF SAFE TESTED ¾ Calculation of the required flexural reinforcement ¾ Check of slab stresses due to the application of dead, live, and post-tensioning loads RESULTS COMPARISON Table shows the comparison of the SAFE total factored moments, required mild steel reinforcing, and slab stresses with independent hand calculations EXAMPLE Eurocode 2-04 PT-SL-001 - Software Verification PROGRAM NAME: REVISION NO.: SAFE Table Comparison of Results FEATURE TESTED Factored moment, Mu (Ultimate) (kN-m) Area of Mild Steel req’d, As (sq-cm) Transfer Conc Stress, top (D+PTI), MPa Transfer Conc Stress, bot (D+PTI), MPa Normal Conc Stress, top (D+L+PTF), MPa Normal Conc Stress, bot (D+L+PTF), MPa Long-Term Conc Stress, top (D+0.5L+PTF(L)), MPa Long-Term Conc Stress, bot (D+0.5L+PTF(L)), MPa INDEPENDENT RESULTS SAFE RESULTS DIFFERENCE 165.9 165.9 0.00% 16.29 16.39 0.61 % −5.057 −5.057 0.00% 2.839 2.839 0.00% −10.460 −10.465 0.05% 8.402 8.407 0.06% −7.817 −7.817 0.00% 5.759 5.759 0.00% COMPUTER FILE: EUROCODE 2-04 PT-SL-001.FDB CONCLUSION The SAFE results show a close comparison with the independent results EXAMPLE Eurocode 2-04 PT-SL-001 - Software Verification PROGRAM NAME: REVISION NO.: SAFE HAND CALCULATIONS: Design Parameters: Mild Steel Reinforcing f’c = 30MPa fy = 400MPa Post-Tensioning fpu = 1862 MPa fpy = 1675 MPa Stressing Loss = 186 MPa Long-Term Loss = 94 MPa fi = 1490 MPa fe = 1210 MPa γm, steel = 1.15 γm, concrete = 1.50 η = 1.0 for fck ≤ 50 MPa λ = 0.8 for fck ≤ 50 MPa Prestressing tendon, Ap Mild Steel, As 229 mm 254 mm 25 mm Length, L = 9754 mm Elevation 914 mm Section Loads: Dead, self-wt = 0.254 m x 23.56 kN/m3 = 5.984 kN/m2 (D) x 1.35 = 8.078 kN/m2 (Du) Live, = 4.788 kN/m2 (L) x 1.50 = 7.182 kN/m2 (Lu) Total = 10.772 kN/m2 (D+L) = 15.260 kN/m2 (D+L)ult ω =10.772 kN/m2 x 0.914 m = 9.846 kN/m, ωu = 15.260 kN/m2 x 0.914 m = 13.948 kN/m Ultimate Moment, M U = EXAMPLE Eurocode 2-04 PT-SL-001 - wl12 = 13.948 x (9.754)2/8 = 165.9 kN-m Software Verification PROGRAM NAME: REVISION NO.: SAFE ⎛ f A ⎞ Ultimate Stress in strand, f PS = f SE + 7000d ⎜1 − 1.36 PU P ⎟ / l fCK bd ⎠ ⎝ ⎛ 1862(198) ⎞ = 1210 + 7000(229) ⎜1 − 1.36 ⎟ /(9754) ⎜ 30(914) ( 229 ) ⎟⎠ ⎝ = 1361 MPa Ultimate force in PT, Fult , PT = AP ( f PS ) = 2(99)(1362) /1000 = 269.6 kN Compression block depth ratio: m = M bd 2ηf cd 165.9 = 0.1731 (0.914)(0.229) (1)(30000 /1.50) Required area of mild steel reinforcing, ω = − − 2m = − − 2(0.1731) = 0.1914 = ⎛ η f bd ⎞ ⎛ 1(30 /1.5)(914)(229) ⎞ AEquivTotal = ω ⎜ cd ⎟ = 0.1914 ⎜ ⎟ = 2303 mm ⎜ f yd ⎟ 400 /1.15 ⎝ ⎠ ⎝ ⎠ ⎛ 1365 ⎞ AEquivTotal = AP ⎜ ⎟ + AS = 2303 mm ⎝ 400 /1.15 ⎠ ⎛ 1361 ⎞ AS = 2303 − 198 ⎜ ⎟ = 1629 mm ⎝ 400 ⎠ Check of Concrete Stresses at Midspan: Initial Condition (Transfer), load combination (D+PTi) = 1.0D+0.0L+1.0PTI Tendon stress at transfer = jacking stress − stressing losses =1490 − 186 = 1304 MPa The force in the tendon at transfer = 1304(197.4) /1000 = 257.4 kN Moment due to dead load, M D = 5.984(0.914)(9.754) / = 65.04 kN-m Moment due to PT, M PT = FPTI (sag) = 257.4(102 mm) /1000 = 26.25 kN-m F M − M PT −257.4 65.04 − 26.23 = ± Stress in concrete, f = PTI ± D A S 0.254(0.914) 0.00983 where S=0.00983m3 f = −1.109 ± 3.948 MPa f = −5.058(Comp) max, 2.839(Tension) max EXAMPLE Eurocode 2-04 PT-SL-001 - Software Verification PROGRAM NAME: REVISION NO.: SAFE Normal Condition, load combinations: (D+L+PTF) = 1.0D+1.0L+1.0PTF Tendon stress at normal = jacking − stressing − long-term=1490 − 186 − 94 = 1210 MPa The force in tendon at normal = 1210(197.4) /1000 = 238.9 kN Moment due to dead load M D = 5.984(0.914)(9.754) / = 65.04 kN-m Moment due to live load M L = 4.788(0.914)(9.754) / = 52.04 kN-m Moment due to PT, M PT = FPTI (sag) = 238.9(102 mm) /1000 = 24.37 kN-m Stress in concrete for (D+L+PTF), F M − M PT −238.8 117.08 − 24.37 f = PTI ± D + L = ± A S 0.254(0.914) 0.00983 f = −1.029 ± 9.431 f = −10.460(Comp) max, 8.402(Tension) max Long-Term Condition, load combinations: (D+0.5L+PTF(L)) = 1.0D+0.5L+1.0PTF Tendon stress at normal = jacking − stressing − long-term = 1490 − 186 − 94 = 1210 MPa The force in tendon at normal, = 1210(197.4) /1000 = 238.9 kN Moment due to dead load, M D = 5.984(0.914)(9.754) / = 65.04 kN-m Moment due to live load, M L = 4.788(0.914)(9.754) / = 52.04 kN-m Moment due to PT, M PT = FPTI (sag) = 238.9(102 mm) /1000 = 24.37 kN-m Stress in concrete for (D+0.5L+PTF(L)), M − M PT F −238.9 91.06 − 24.33 f = PTI ± D + 0.5 L = ± A S 0.254(0.914) 0.00983 f = −1.029 ± 6.788 f = −7.817(Comp) max, 5.759(Tension) max EXAMPLE Eurocode 2-04 PT-SL-001 -

Ngày đăng: 18/09/2023, 20:42

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN