Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 65 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
65
Dung lượng
1,53 MB
Nội dung
i ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG Trần Thị Dƣơng NGHIÊN CỨUHỆ CHUYÊN GIA VÀ MạNG NGữ NGHĨA Để GIảI BÀI TOÁN TAM GIÁC LƢợNG Chuyên ngành: KHOA HỌC MÁY TÍNH lu an Mã số chuyên ngành: 60 48 0101 n va p ie gh tn to TÓM TẮT LUẬN VĂN THẠC SĨ KHOA HỌC MÁY TÍNH d oa nl w lu PGS.TS Ngô Quốc Tạo ll u nf va an NGƢỜI HƢỚNG DẪN KHOA HỌC oi m z at nh z m co l gm @ Thái Nguyên - 2015 an Lu n va ac th Số hoá Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn si ii LỜI CAM ĐOAN Tôi xin cam đoan, kết luận văn hoàn toàn kết tự thân tơi tìm hiểu, nghiên cứu dƣới hƣớng dẫn thầy giáo PGS.TS Ngơ Quốc Tạo Tơi hồn tồn chịu trách nhiệm tính pháp lý q trình nghiên cứu khoa học luận văn Thái Nguyên, tháng năm 2015 lu an Học viên n va tn to p ie gh Trần Thị Dƣơng d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th Số hoá Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn si iii LỜI CẢM ƠN Em xin gửi lời cảm ơn chân thành đến thầy giáo PGS.TS Ngô Quốc Tạo định hƣớng nhiệt tình hƣớng dẫn, giúp đỡ em trình làm luận văn Em xin gửi lời biết ơn sâu sắc đến quý thầy cô giáo trƣờng Đại học Công nghệ thông tin truyền thông, thầy giáo, cô giáo Viện công nghệ thông tin Hà Nội truyền đạt kiến thức kinh nghiệm quý báu cho chúng em thời gian học tập Xin chân thành cảm ơn bạn bè, đồng nghiệp tổ Tin – Công Nghệ lu trƣờng THPT Kinh Môn 2, bạn học viên lớp cao học CK12B, ngƣời an thân gia đình động viên, chia sẻ, tạo điều kiện giúp đỡ suốt va n trình học tập làm luận văn tn to ie gh Thái Nguyên, tháng năm 2015 p Học viên oa nl w d Trần Thị Dƣơng ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th Số hoá Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn si iv MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN iii MỤC LỤC iv DANH MỤC HÌNH vi MỞ ĐẦU - Chƣơng I : TỔNG QUAN VỀ HỆ CHUYÊN GIA VÀ MẠNG NGỮ NGHĨA- 1.1 Hệ chuyên gia - 1.1.1 Hệ chuyên gia ? - 1.1.2 Đặc trƣng ƣu điểm hệ chuyên gia - - lu 1.1.3 Các lĩnh vực ứng dụng hệ chuyên gia - - an va 1.1.4 Cấu trúc hệ chuyên gia - - n 1.1.5 Một số mô hình kiến trúc hệ chuyên gia - 1.2.1 Đặc điểm - - ie gh tn to 1.2 Mạng ngữ nghĩa - - p 1.2.2 Ƣu nhƣợc điểm - - nl w 1.2.3 Cách biểu diễn tri thức - 10 - d oa CHƢƠNG II: BIỂU DIỄN TRI THỨC - 12 - an lu 2.1 Giới thiệu tri thức - 12 - va 2.2 Biểu diễn tri thức luật dẫn(luật sinh) - 13 - u nf 2.2.1 Khái niệm - 13 - ll 2.2.2 Cơ chế suy luận luật sinh - 14 - m oi 2.2.3 Vấn đề tối ƣu luật - 15 - z at nh 2.2.4 Biểu diễn tri thức Frame - 17 2.2.5 Tính kế thừa - 19 - z gm @ 2.2.6 Biểu diễn tri thức Script - 20 2.2.7 Mơ hình COKB - 21 - l 2.3.1 m co 2.3 Cơ sở tri thức - 29 Phân biệt tri thức liệu - 29 - an Lu 2.3.2 Phân loại tri thức - 30 - n va ac th Số hoá Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn si v 2.3.3 Các cấp độ tri thức - 32 2.4 Mô tơ suy diễn - 33 2.4.1 Cơ chế suy diễn - 33 2.4.2 Cơ chế điều khiển - 34 2.5 Phân loại tri thức - 38 2.6 Các phƣơng pháp biểu diễn tri thức - 39 2.6.1 Biểu diễn tri thức nhờ logic - 39 2.6.2 Bộ ba đối tƣợng - Thuộc tính – Giá trị - 41 2.6.3 Các Luật dẫn - 42 2.6.4 Biểu diễn tri thức Frame - 44 - lu Chƣơng III: ỨNG DỤNG GIẢI CÁC BÀI TOÁN TAM GIÁC - 46 - an 3.1 Giới thiệu toán - 46 - va n 3.2 Xây dựng tốn hình học - 46 3.3.1 Tam giác - 46 - ie gh tn to 3.3 Bài tốn hình tam giác: - 46 - p 3.3.2 Tam giác cân - 50 - nl w 3.3.3 Tam giác vuông - 51 - oa 3.3.4 Tam giác vuông cân - 51 - d 3.3.5 Tam giác - 52 - lu va an 3.4 Các luật biến đổi - 53 - u nf 3.4.1.Một số luật liên quan đến tam giác : - 53 - ll 3.4.2 Các luật dẫn: - 54 - m oi 3.5 Biểu diễn thông tin mạng ngữ nghĩa: - 55 - z at nh 3.6 Ứng dụng : - 55 3.7 Demo chƣơng trình: - 57 - z @ KẾT LUẬN - 58 - m co l gm TÀI LIỆU THAM KHẢO - 59 - an Lu n va ac th Số hoá Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn si vi DANH MỤC HÌNH Hình 1.1: Hoạt động hệ chuyên gia dựa tri thức - Hình 1.2: Cấu trúc hệ chuyên gia - Hình 1.3: Mơ hình J.L.Ermin .- Hình 1.4 :Mơ hình C.Ernest .- Hình 1.5: Mơ hình E.V.Popov - Hình 1.6: Ví dụ mạng ngữ nghĩa tiêu biểu - 10 Hình 1.7: Ví dụ mạng ngữ nghĩa kế thừa - 11 Hình 2.1: Cấu trúc Frame xe - 18 - lu Hình 2.2: Quan hệ đối tƣợng hình học phẳng - 20 - an Hình 2.3: Sơ đồ tổ chức theo mơ hình COKB - 25 - va n Hình 2.4: Sơ đồ biểu diễn tri thức theo ba (O-A-V) - 41 - p ie gh tn to Hình 3.1: Mạng ngữ nghĩa cho tốn hình tam giác - 55 - d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th Số hoá Trung tâm Học liệu – ĐHTN http://www.lrc.tnu.edu.vn si -1MỞ ĐẦU Đặt vấn đề Trong nghiệp công nghiệp hố, đại hố đất nƣớc, ngành cơng nghệ thơng tin lĩnh vực có đƣợc bƣớc tiến lớn đạt đƣợc thành tựu đáng kể Cùng với phát triển ngành công nghệ thông tin, vấn đề phức tạp thực tế đƣợc đơn giản nhiều Nhờ mà q trình phát triển đƣợc thúc đẩy nhanh chóng Vai trị của cơng nghệ thơng tin thời buổi cơng nghiệp hố, đại hố đất nƣớc phủ nhận, nhiên việc ứng dụng công nghệ thông tin vào lĩnh vực ứng dụng nhƣ để khai thác hết đƣợc mạnh ngành công nghệ thông tin câu hỏi lớn Việc ứng dụng tri thức nhân lu an loại vào ngành công nghệ thông tin để góp phần đƣa lời giải cho nhiều n va vấn đề khó đƣợc xem giải pháp cần thiết có ý nghĩa Các tri thức nhân to loại đƣợc xây dựng thành hệ thống hoàn chỉnh ứng dụng nhiều gh tn ngành khác dƣới hộ trợ công nghệ thông tin Việc chuyển đổi tri thức nhân loại thành hệ thống hay đƣợc gọi biểu diễn tri thức đƣợc thực ie p hiện, tri thức đƣợc ứng dụng rộng rãi trình phát triển w xã hội oa nl Biểu diễn tri thức đóng vai trị quan trọng việc khảng định khả d giải vấn đề hệ sở tri thức Dựa vào cách thức ngƣời giải lu an vấn đề, nhà nghiên cứu xây dựng kỹ thuật biểu diễn dạng tri thức u nf va khác máy tính Mục tiêu tiểu luận nhằm tìm hiểu phát triển kỹ thuật biểu diễn tri thức dựa tri thức theo logic, luật dẫn, mạng ngữ nghĩa, ll oi m Frame, đồng thời trình bày việc ứng dụng giải tốn tam giác mạng ngữ nghĩa z at nh Trong luận văn này, em nghiên cứu đƣa minh hoạ cho việc biểu diễn tri thức công nghệ thông tin ứng dụng minh hoạ cho trình biểu diễn tri thức z Cho dù phạm vi ứng dụng hệ thống hạn chế, nhƣng sở gm @ để phát triển hệ thống chuyên gia Và luận văn này, em muốn gửi đến ứng dụng khác, ứng dụng mạng ngữ nghĩa để giải toán tam giác lƣợng m co l chƣơng trình phổ thơng an Lu n va ac th si -22 Đối tƣợng phạm vi nghiên cứu: Luận văn tập trung nghiên cứu phƣơng pháp giải toán lƣợng giác Để giải tốn hình học tốn sở, mà từ ngƣời xây dựng nhiều ứng dụng nhƣ: Giải toán tam giác lƣơng, hệ thức lƣợng tam giác… Hƣớng nghiên cứu đề tài: - Nắm kiến thức số toán tam giác lƣợng để sử dụng số giải thuật - Tìm hiểu lịch sử phát triển sở tri thức giải tốn tam giác lƣợng - Tìm hiểu nắm đƣợc khái niệm tam giác lƣợng ứng dụng thực tế lu Nội dung nghiên cứu: an va Chương I: Tổng quan hệ chuyên gia mạng ngữ nghĩa n Ở chƣơng đề tài vào tìm hiểu khái niệm hệ chuyên gia mạng to Các ƣu nhƣợc điểm mạng ngữ nghĩa ie gh tn ngữ nghĩa p Chương II: Biểu diễn tri thức Trong chƣơng tìm hiểu sâu luật cách biểu diễn tri thức w oa nl Chương III: Ứng dung mạng ngữ nghĩa để giải toán tam giác lượng d Chƣơng đƣa mục đích, u cầu nhƣ mơ tả chƣơng trình thực an lu nghiệm đƣợc xây dựng va Phƣơng pháp nghiên cứu: ll u nf - Nghiên cứu tài liệu viết tổng quan m - Phƣơng pháp phân tích, đánh giá tốn oi - Nghiên cứu triển khai thử nghiệm hệ thống z at nh z m co l gm @ an Lu n va ac th si -3Chƣơng I : TỔNG QUAN VỀ HỆ CHUYÊN GIA VÀ MẠNG NGỮ NGHĨA 1.1 Hệ chuyên gia 1.1.1 Hệ chuyên gia ? Hệ chuyên gia hệ thống chƣơng trình máy tính chứa thơng tin, tri thức q trình suy luận lĩnh vực cụ thể để giải vấn đề khó hóc búa địi hỏi tinh thông đầy đủ chuyên gia ngƣời giải pháp họ Nói cách khác hệ chuyên gia dựa tri thức chuyên gia ngƣời giỏi lĩnh vực quan tâm Tri thức hệ chuyên gia bao gồm kiện luật Các kiện đƣợc cấu thành số nhiều thông tin, đƣợc thu thập rộng rãi, công khai lu an đƣợc đồng tình chuyên gia ngƣời lĩnh vực Các luật biểu thị n va đốn chun mơn chun gia lĩnh vực to Mức độ hiệu hệ chuyên gia phụ thuộc vào kích thƣớc chất gh tn lƣợng sở tri thức mà hệ có đƣợc ie Mỗi hệ chuyên gia đặc trƣng cho lĩnh vực vấn đề đó, nhƣ y học, p tài chính, khoa học hay công nghệ, vv…, mà cho lĩnh vực nl w vấn đề oa Ví dụ : hệ chuyên gia lĩnh vực y học để phát bệnh lây nhiễm d có nhiều tri thức số triệu chứng lây bệnh, lĩnh vực tri thức y học bao gồm lu an bệnh, triệu chứng chữa trị ll u nf va Hoạt động hệ chuyên gia dựa tri thức đƣợc minh họa nhƣ sau: Cơ sở tri thức oi m Hệ thống giao tiếp z at nh Ngƣời sử dụng Máy suy diễn z gm @ m co l Hình 1.1: Hoạt động hệ chuyên gia dựa tri thức an Lu n va ac th si -41.1.2 Đặc trưng ưu điểm hệ chuyên gia Có đặc trƣng bản: Hiệu cao: Khả trả lời với mức độ tinh thông cao so với chuyên gia (ngƣời) lĩnh vực Thời gian trả lời thỏa đáng: Thời gian trả lời hợp lý, nhanh so với chuyên gia (ngƣời) để đến định Độ tin cậy cao: Không thể xảy cố giảm sút độ tin cậy sử dụng Dễ hiểu: Hệ chuyên gia giải thích bƣớc suy luận cách dễ hiểu quán Những ƣu điểm hệ chuyên gia : lu Phổ cập: Là sản phẩm chuyên gia, đƣợc phát triển không ngừng với hiệu an Giảm giá thành n va sử dụng phủ nhận to gh tn Giảm rủi ro: Giúp ngƣời tránh đƣợc rủi ro môi trƣờng nguy ie hiểm p Tính thƣờng trực: Bất kể lúc khai thác sử dụng Trong nl w ngƣời mệt mỏi, nghỉ ngơi hay vắng mặt d oa Đa lĩnh vực: Chuyên gia nhiều lĩnh vực khác đƣợc khai thác đồng va Độ tin cậy an lu thời thời gian sử dụng oi z at nh Khả trả lời nhanh m ràng, chi tiết, dễ hiểu ll u nf Khả giảng giải: Câu trả lời với mức độ tinh thơng đƣợc giảng giải rõ Tính ổn định, suy luận có lý đầy đủ lúc nơi z Trợ giúp thông minh nhƣ ngƣời hƣớng dẫn @ l 1.1.3 Các lĩnh vực ứng dụng hệ chuyên gia gm Có thể truy cập nhƣ sở liệu thông minh m co Tính đến thời điểm này, hàng trăm hệ chuyên gia đƣợc xây dựng báo cáo an Lu thƣờng xuyên tạp chí, sách báo hội thảo khoa học Ngồi cịn hệ n va ac th si - 45 - (text, integer, real, pointer…) - (tên, giá trị, thủ tục, pointer) Cấu trúc Frame cho ta “khung liệu” để khoanh vùng đối tƣợng, đặc trƣng quan trọng biểu diễn nhờ Frame khả thừa kế thơng tin slot có tên đối tƣợng bậc Khi toán trở nên phức tạp việc mơ tả điều khiển Frame phức tạp nhiều phƣơng pháp biểu diễn thủ tục khác lu an n va p ie gh tn to d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th si - 46 - Chƣơng III: ỨNG DỤNG GIẢI CÁC BÀI TOÁN TAM GIÁC 3.1 Giới thiệu tốn Trong chƣơng trình phổ thơng có hai dạng tốn hay gặp tốn hình học toán đại số Với hai dạng toán này, việc biểu diễn mạng ngữ nghĩa có tác động tích cực đến ngƣời học Với tính trực quan mạng ngữ nghĩa, ngƣời học dễ dàng tiếp thu hình thành tri thức nhanh chóng Có nhiều dạng tốn hình học đại số chƣơng trình phổ thơng, nhƣng hạn chế thời gian nên xin giới thiệu dạng bản: Mạng ngữ nghĩa cho tốn hình học phẳng lu an 3.2 Xây dựng tốn hình học va n Các tốn hình học phẳng gồm dạng tốn nhƣ giải tốn hình tam giác, Các tốn đƣợc hình thành dựa tính chất thuộc tính hình ie gh tn to hình vng, hình thoi, p học phẳng Do xác định đƣợc đối tƣợng mạng ngữ nghĩa toán đỉnh, cạnh Và mối liên hệ đối tƣợng tính chất w d oa nl tốn hình học va 3.3.1 Tam giác an lu 3.3 Bài tốn hình tam giác: ll u nf Về mặt tính tốn, xem tam giác mạng tính tốn (hay oi m đối tƣợng tính tốn) bao gồm biến ghi nhận giá trị yếu tố tam giác, z at nh quan hệ công thức thể mối liên hệ tính tốn yếu tố Tập biến tam giác gồm : z m co l gm @ an Lu n va ac th si - 47 - A α c hc b hb δ β a C B lu an n va p ie gh tn to đƣờng trung tuyến nl w đƣờng cao d oa - a, b, c : cạnh tam giác an lu - , , : góc đối diện với cạnh tƣơng ứng tam giác va - ha, hb, hc : đƣờng cao tƣơng ứng với cạnh tam giác ll u nf - ma, mb, mc : đƣờng trung tuyến tƣơng ứng với cạnh tam giác - p : nửa chu vi tam giác z at nh - S : diện tích tam giác oi m - pa, pb, pc : đƣờng phân giác tƣơng ứng với cạnh tam giác z - R : bán kính đƣờng trịn ngoại tiếp tam giác gm @ - r : bán kính đƣờng tròn nội tiếp tam giác an Lu - Liên hệ góc : m co Các hệ thức yếu tố tam giác : l - ra, rb, rc : bán kính đƣờng tròn bàng tiếp tam giác n va ac th si - 48 f1 : A+ B + C = (rad ian) - Định lý cosin : f2 : a2 = b2 + c2 - 2.b.c.cosA f3 : b2 = a2 + c2 - 2.a.c.cosB f4 : c2 = a2 + b2 - 2.a.b.cosC - Định lý Sin : a b sin sin f6 : c b sin sin f7 : a c sin sin f8 : a 2R sin lu f5 : an n va gh tn to p ie f9 : b 2R sin c 2R sin f10 : Liên hệ nửa chu vi cạnh : d oa 2.p = a + b + c an lu f11 : nl w - S= f17 : S = b.c.sinA / f18 : S = c.a.sinB/ f19 : S = a.b.sinC/ p(p a)(p b)(p c) an Lu - Các công thức tính đƣờng cao theo cạnh góc : m co f16 : l S = p.r gm f15 : @ S = c.hc/2 z f14 : z at nh S = b.hb/2 oi f13 : m S = a.ha/2 ll f12 : u nf va - Các công thức tính diện tích : n va ac th si - 49 f20 : = b.sinC f21 : = c.sinB f22 : hb = a.sinC f23 : hb = c.sinA f24 : hc = a.sinB f25 : hc = b.sinA - Các cơng thức tính đƣờng trung tuyến : f26 : 4.ma2 = 2.b2 + 2.c2 - a2 f27 : 4.mb2 = 2.a2 + 2.c2 - b2 f28 : 4.mc2 = 2.a2 + 2.b2 - c2 lu an - Các cơng thức tính đƣờng phân giác : n va pa = b.c.p.(p a) bc pb = a.c.p.(p b) ac pc = b.a.p.(p c) ba gh tn to f29 : f30 : p ie nl w f31 : d oa - Một số công thức khác liên quan đến bán kính đƣờng trịn ngoại tiếp, đƣờng an lu trịn nội tiếp, đƣờng tròn bàng tiếp : R= a.b.c 4.S f33 : = S p-a f34 : rb = S p-b f35 : rc = S p-c f36 : 4.R = + rb + rc - r ll u nf va f32 : oi m z at nh z m co l gm @ Ghi : Trong cơng thức trên, có số cơng thức đƣợc suy từ an Lu cơng thức khác Do ta bỏ bớt số cơng thức Hơn nữa, n va ac th si - 50 nêu lên thuật tốn để làm tối thiểu hóa cơng thức (hay quan hệ) theo thứ tự ƣu tiên Tuy nhiên, nhớ đƣợc trực tiếp nhiều cơng thức việc tính tốn có lợi 3.3.2 Tam giác cân Tam giác cân (không làm tính tổng quát, ta giả sử cân A) tam giác có tính chất sau đây: lu an n va b=c g2 : B=C g3 : hb = h c g4 : mb = mc g5 : pb = p c g6 : rb = r c g7 : ma = g8 : pa = h a gh tn to g1 : p ie Ngồi ra, số quan hệ tam giác đƣợc viết lại nhƣ sau: A + 2B = (radian) nl w f1 : a2 = 2b2.(1- cosA) f3 : a = 2.b.cosB f4 : a = 2.c.cosC f11 : 2.p = a + 2b f17 : S = b2.sinA / f26 : 4.ma2 = 4.b2 - a2 f27 : 4.mb2 = 2.a2 + b2 f28 : 4.mc2 = 2.a2 + c2 f29 : pa = f32 : a b2 R= 4.S f36 : 4.R = + 2.rb - r d oa f2 : ll u nf va an lu oi m z at nh z m co l gm @ p.(p a) an Lu n va ac th si - 51 3.3.3 Tam giác vng Khơng làm tính tổng qt, ta giả sử tam giác vng có cạnh huyền a Nhƣ thế, hệ thức biết tam giác nói chung ta cịn có : g1 : A = /2 ( xác định) Ngoài số quan hệ đƣợc viết lại nhƣ sau: lu an n va B+ C = /2 (radian) f2 : a2 = b + c f3 : c = a.cosB f4 : b = a.cosC f5 : b = a.sinB f7 : c = a.sinC f8 : a = 2.R f17 : S = b.c/2 hb = c f25 : hc = b f26 : 2.ma = a ie f23 : p gh tn to f1 : (định lý Pitago) nl w 4.mb2 = b2 + 4.c2 f28 : 4.mc2 = c2 + 4.b2 d oa f27 : an lu 3.3.4 Tam giác vuông cân va ll u nf Tam giác vuông cân (với cạnh đáy tam giác cân a) tam giác có : A = /2 z at nh g2 : oi b = c, m g1 : Ngồi số (nhóm) quan hệ tam giác đƣợc thay nhóm z gm @ quan hệ khác có hiệu việc sử dụng (radian) f2 : C = /4 (radian) f3 : a = b an Lu B = /4 m co f1 : l Các quan hệ từ f1 đến f10 đƣợc thay quan hệ sau : n va ac th si - 52 f4 : a = c f5 : a = 2.R Các quan hệ từ f11 đến f25 đƣợc thay quan hệ sau : lu an f11 : 2.p = a(1+ ) f12 : = a/2 f13 : hb = c f14 : hc = b f15 : S = a2 /4 f16 : S = b2 /2 f17 : S = c2 /2 f18 : S = p.r va n Các quan hệ từ f26 đến f28 đƣợc thay quan hệ sau : ma = a/2 4.mb2 = 5a2 /2 mc = mb ie f27 : p gh tn to f26 : f28 : oa nl w Quan hệ f29 đến f31 đƣợc thay bởi: pa = a/2 f30 : pb = a f31 : pc = p b d f29 : lu ll u nf va an 3.3.5 Tam giác ( 1) m oi Tam giác tam giác có : g2 : b=c z a=b z at nh g1 : @ (radian) f2 : B = /3 (radian) f3 : C = /3 (radian) an Lu A = /3 m co f1 : l gm Tất quan hệ từ f1 đến f36 đƣợc thay quan hệ sau : n va ac th si - 53 - f4 : R = a 3 f5 : p = 3a f6 : a2 S = f7 : = f8 : hb = h a f9 : hc = h a f10 : ma = f11 : mb = ma f12 : mc = ma f13 : pa = a lu an n va gh tn to p ie f14 : a pb = p a pc = p a a nl w f15 : a r = f17 : = f18 : rb = r a f19 : rc = r a d oa f16 : ll u nf va an lu a oi m 3.4 Các luật biến đổi z at nh Giữa đối tƣợng hình học trình bày có số luật biến đổi mà ta áp dụng q trình tính tốn z gm @ 3.4.1.Một số luật liên quan đến tam giác : Tam giác có hai cạnh tam giác cân L2 : Tam giác có góc tam giác cân L3 : Tam giác có đƣờng cao trung tuyến tƣơng ứng tam giác an Lu cân m co l L1 : n va ac th si - 54 L4 : Tam giác có đƣờng cao đƣờng phân giác tƣơng ứng tam giác cân L5 : Tam giác có trung tuyến đƣờng phân giác tƣơng ứng tam giác cân L6 : Tam giác có góc vng tam giác vng L7 : Tam giác có bình phƣơng cạnh tổng bình phƣơng hai cạnh tam giác vuông L8 : Tam giác có góc vng hai cạnh kề góc vng tam giác vuông cân L9 : Tam giác vng có hai cạnh kề góc vng tam giác vuông lu cân an L10 : Tam giác cân góc đỉnh góc vng tam giác vng cân va n L11 : Tam giác có cạnh tam giác L13 : Tam giác cân có góc ( / 3) tam giác ie gh tn to L12 : Tam giác có góc tam giác p 3.4.2 Các luật dẫn: nl w 3.4.2.1 Các luật tam giác thường: d oa R1: {a,b,c} > {P} lu R2: {a,b,c,P} > {S} 3.4.2.2 Các luật tam giác vuông z an Lu R5: (Nếu A= /2 b = c -> B = C =/4) m co R4: {a} > {R} l R3: {b,c} > {a} gm R2: {a,b} > {B} @ R1: {B} > {C} z at nh R7: {a, A} > {R} oi m R6: {b,c, A} > {a} ll R5: {a,b,c} > {A} u nf R4 :{a,S} > {ha} va an R3: {A,B} > {C } n va ac th si - 55 3.4.2.3 Các luật tam giác cân R1: {A} > {B} R2: {C} > {B} R3: {b, A} > {a} R4: {c, A} > {a} R5: (Nếu B= C b = c, b = c B =/3 A= C =/3 ) 3.4.2.4 Tam giác R1: {a} > {S} R2: {a} > {P} 3.5 Biểu diễn thông tin mạng ngữ nghĩa: lu an n va p ie gh tn to d oa nl w ll u nf va an lu oi m z at nh Hình 3.1: Mạng ngữ nghĩa cho tốn hình tam giác Trong mạng ngữ nghĩa trên, trịn biểu thị cho đối tƣợng tốn z vuông thể mối quan hệ đối tƣợng l gm @ 3.6 Ứng dụng : m co Nhƣ nói trên, xét tam giác bao gồm 22 yếu tố.Giữa yếu tố tam giác có quan hệ cho phép ta tính đƣợc yếu tố cần thiết an Lu n va ac th si - 56 tam giác từ giả thiết biết số yếu tố tam giác.Nhờ vào lý thuyết mạng tính tốn ta cài đặt chƣơng trình để giải tam giác Khi ta cho biết số yếu tố tam giác yêu cầu tính số yếu tố khác, chƣơng trình cho lời giải (nếu toán giải đƣợc).Trong trƣờng hợp tốn khơng giải đƣợc chƣơng trình thơng báo để ta cho thêm kiện điều chỉnh lại toán Bài toán Trong tam giác ABC giả sử biết cạnh c, góc A, góc B Hãy tính đƣờng cao hc Nhƣ ta có : lu an n va Giả thiết : A,B,c Tính biến : hc a> Thuật giải suy diễn tiến: gh tn to Tính góc C : A, B C ie Tính hb : c, A hb p Tính : c,B a nl w Tính a : c, C, A d oa Tính b : c, C, B b an lu Tính P : a,b,c P Tính S: a,b,c,P S ll b> Thuật giải suy diễn lùi: u nf va Tính hc : a, B hc oi m Bƣớc 1: Tính hc : a, B hc z at nh Bƣớc : Để tính đƣợc hc ta cần tìm a Ta dùng luật : A,C, c a z l gm Ta dùng luật : A, B C @ Bƣớc 3: Để tính đƣợc a, ta cần tính đƣợc C m co Tới đủ kiện để sinh C, ta thay C ngƣợc lại biểu thức trƣớc, sau tiếp tục thay vào cơng thức phía trƣớc tìm đƣợc hc an Lu n va ac th si - 57 3.7 Demo chƣơng trình: Suy diễn tiến lu an n va p ie gh tn to d oa nl w lu ll u nf va an Suy diễn lùi oi m z at nh z m co l gm @ an Lu Thiếu giả thiết n va ac th si - 58 KẾT LUẬN Biểu diễn tri thức tính tốn dƣới dạng đối tƣợng tự nhiên gần gũi với cách nhìn nghĩ ngƣời giải vấn đề tính tốn có liên quan đến số khái niệm đối tƣợng, ứng dụng đƣợc nêu mạng tính tốn áp dụng việc biểu diễn giải số tốn phản ứng hóa học ta xem tri thức nhƣ mạng mạng tính toán mà phản ứng số quan hệ mạng Mạng ngữ nghĩa dạng công cụ dùng để biểu diễn tri thức Với tính chất loại cơng cụ này, mạng ngữ nghĩa thích hợp cho việc biểu diễn tri thức dạng dự đốn tính tốn dựa cở sở thơng tin cố định Mạng ngữ nghĩa lu thích hợp cho việc biểu diễn hệ chuyên gia Hệ thống chuyên gia đƣợc xây dựng an n va sở thu thập nhiều thơng tốt Mạng ngữ nghĩa thích hợp cho việc thêm thơng tin vào mạng Với hệ chuyên gia việc thêm thông tin vào to gh tn mạng lƣới thông tin có cần thiết, thơng tin nhiều chi tiết hệ chun gia có giá trị ie p Ngồi mạng ngữ nghĩa cịn ứng dụng nhiều lĩnh vực khác nhƣ xây nl w dựng mạng giao thông, luồng giao thông oa Việc biểu diễn tri thức mạng ngữ nghĩa thuận tiện cho việc biểu diễn d thơng tin máy tính lu va an Trong xu hƣớng công phát triển xã hội, việc biểu diễn tri thức u nf nhân loại phƣơng tiện, cơng cụ (nhất máy tính) vơ cần thiết Và ll để thực việc này, ứng dụng mạng ngữ nghĩa phƣơng tiện biểu diễn tri thức oi m cần thiết z at nh z m co l gm @ an Lu n va ac th si - 59 TÀI LIỆU THAM KHẢO [1] Bài giảng – Hệ chuyên gia Tác giả: GS.TS Vũ Đức Thi Năm 2009 [2] GS TSKH Hoàng Kiếm, TS Đỗ Phúc, TS Đỗ Văn Nhơn Giáo trình hệ sở tri thức Nhà xuất Đại Học Quốc Gia TP Hồ Chí Minh, 2009 [3] GS.TSKH Hồng Kiếm, Ths Đinh Nguyễn Anh Dũng Giáo trình Trí Tuệ Nhân Tạo Đại học công nghệ thông tin, 2007 [4] PGS.TS Đỗ Văn Nhơn, giảng Biểu diễn tri thức ứng dụng [5] Dragan Gasevic, Dragan Djuric, Vladan Devedzic Model Driven Architecture and Ontology Development [6] Các website tham khảo lu an n va - http://en.wikipedia.org/wiki/Semantic_network - http://en.wikipedia.org/wiki/Spreading_activation - http://tailieu.vn/xem-tai-lieu/chuong-3-cac-phuong-phap-bieu-dien-tri-thuc-va- p ie gh tn to xu-ly-tri-thuc.752159.html d oa nl w ll u nf va an lu oi m z at nh z m co l gm @ an Lu n va ac th si