1. Trang chủ
  2. » Luận Văn - Báo Cáo

Bài toán ước lượng trạng thái cho một số lớp hệ động lực và áp dụng

104 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 104
Dung lượng 592,05 KB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC: BÀI TOÁN ƯỚC LƯỢNG TRẠNG THÁI CHO MỘT SỐ LỚP HỆ ĐỘNG LỰC VÀ ÁP DỤNG LUẬN VĂN THẠC SĨ Năm: BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC Chuyên ngành: : Mã số: : LUẬN VĂN THẠC SĨ Người hướng dẫn TS 1 PHẦN MỞ ĐẦU Vật liệu tổng hợp đóng vai trị quan trọng nhiều ngành khoa học kỹ thuật học, vật lý, hóa học, sinh học Trong vật liệu tổng hợp, tính chất vật lý (chẳng hạn tính dẫn nhiệt, tính đàn hồi, tính dẫn điện, từ tính ) khơng liên tục dao động thành phần khác cấu tạo nên vật liệu Khi thành phần trộn lẫn với nhau, tính chất dao động nhanh dẫn tới cấu trúc vi mơ trở lên phức tạp 47 2 Nhóm nhị diện Mệnh đề Cho nhóm nhị diện Dn = ⟨r, s | rn = s2 = 1, s−1 rs = r−1 ⟩ với n ⩾ 3, H nhóm Dn Khi (i) Nếu H = Rk với k|n, ⩽ k ⩽ n Pr(H, Dn ) =  n+k   n n lẻ, n chẵn k ∤ , 2n   n + 2k n chẵn k | n 2n (ii) Nếu H = Tl với ⩽ l ⩽ n − Pr(H, Dn ) =  n+1   n lẻ, 2n   n + n chẵn 2n (iii) Nếu H = Ui,j với i|n, ⩽ i ⩽ n − 1, ⩽ j ⩽ i − Pr(H, Dn ) =  n+i+2     4n         n lẻ, n+i+4 n n chẵn i ∤ , 4n n + 2i + n n chẵn i | 4n Chứng minh (i) Giả sử H = Rk với k|n, ⩽ k ⩽ n Theo Mệnh đề 47 ta có |Rk | = Do Rk = ⟨rk ⟩ =  n n = (n, k) k  n rkl ⩽ l ⩽ − k Khi X |CDn (x)| = |CDn (1)| + x∈Rk Ta xét hai trường hợp n sau X 1⩽l⩽ nk −1 |CDn (rkl )| Trường hợp 1: n lẻ Theo Mệnh đề 48 ta có X kl |CDn (r )| = n k 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + n k x∈Rk  − |R1 |  − |R1 | = 2n + n k  −1 n= n(n + k) k Áp dụng Mệnh đề 15 ta có Pr(Rk , Dn ) = X 1 n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k Trường hợp 2: n chẵn Ta xét hai trường hợp k n Trường hợp 2a: k ∤ Khi đó, theo Mệnh đề 48 ta có n  X |CDn (rkl )| = k 1⩽l⩽ nk −1 Từ suy X |CDn (x)| = |Dn | + x∈Rk n k − |R1 |  − |R1 | = 2n + n k  −1 n= n(n + k) k Áp dụng Mệnh đề 15, ta có X n+k n+k |CDn (x)| = n n = |Rk ||Dn | k 2n 2n x∈Rk k n Trường hợp 2b: k | Khi đó, theo Mệnh đề 48 ta có n  X X n  s ⩽ l ⩽ −1 i 53 Khi đó, theo Mệnh đề 15, ta có X X |CSD2n (rli )| + |CSD2n (x)| = 0⩽l⩽ 2i −1 0⩽l⩽ 2i −1 = |CSD2n (1)| + |CSD2n (r2 n−1 |CSD2n (rli+j s)| n n x∈Ui,j X )| + X |CSD2n (rli )| + n 1⩽l⩽ 2i −1 l̸=  = |SD2n | + |SD2n | + = n+1 +2 n+1  + 2n i X |CSD2n (rli+j s)| n 0⩽l⩽ 2i −1 n−1 i  − |R1 | + 2n |U n−1 | i ,li+j 2n 2n+1 (2n−1 + i + 2) 2n n −2 + = i i i  Do đó, theo Mệnh đề 15 ta có Pr(Ui,j , SD2n ) = = X 1 2n+1 (2n−1 + i + 2) |CSD2n (x)| = n+1 |Ui,j ||SD2n | i x∈Ui,j 2n+1 i 2n+1 (2n−1 + i + 2) 2n−1 + i + i+2 = = + n+1 i 2n+1 22(n+1) i Vậy ta có điều phải chứng minh Trong ví dụ sau ta tính độ giao hốn tương đối nhóm nhóm giả nhị diện SD8 SD16 cách áp dụng Mệnh đề ?? Ví dụ (i) Với n = 3, xét nhóm giả nhị diện SD8 = ⟨r, s | r8 = s2 = 1, s−1 rs = r3 ⟩ Các nhóm SD8 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩ T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T6 = ⟨r6 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩; SD8 Khi Pr(R1 , SD8 ) = 1 + = , Pr(R2 , SD8 ) = + = , 8 54 Pr(R4 , SD8 ) = + = 1, Pr(R8 , SD8 ) = 1; Pr(T0 , SD8 ) = Pr(T1 , SD8 ) = Pr(T2 , SD8 ) = Pr(T3 , SD8 ) 1 = Pr(T4 , SD8 ) = Pr(T6 , SD8 ) = + = ; 8 2+2 Pr(U2,0 , SD8 ) = Pr(U2,1 , SD8 ) = + = , 16 1 Pr(U4,0 , SD8 ) = Pr(U4,2 , SD8 ) = + = ; 8 Pr(SD8 , SD8 ) = 16 (ii) Với n = 4, xét nhóm giả nhị diện SD16 = ⟨r, s | r1 = s2 = 1, s−1 rs = r7 ⟩ Các nhóm SD16 R1 = ⟨r⟩, R2 = ⟨r2 ⟩, R4 = ⟨r4 ⟩, R8 = ⟨r8 ⟩, R16 = {1}; T0 = ⟨s⟩, T1 = ⟨rs⟩, T2 = ⟨r2 s⟩, T3 = ⟨r3 s⟩, T4 = ⟨r4 s⟩, T5 = ⟨r5 s⟩, T6 = ⟨r6 s⟩, T7 = ⟨r7 s⟩, T8 = ⟨r8 s⟩, T10 = ⟨r10 s⟩, T12 = ⟨r12 s⟩, T14 = ⟨r14 s⟩; U2,0 = ⟨r2 , s⟩, U2,1 = ⟨r2 , rs⟩, U4,0 = ⟨r4 , s⟩, U4,2 = ⟨r4 , r2 s⟩, U4,3 = ⟨r4 , r3 s⟩, U8,0 = ⟨r8 , s⟩, U8,2 = ⟨r8 , r2 s⟩, U8,4 = ⟨r8 , r4 s⟩; SD16 Khi + = , Pr(R2 , SD16 ) = + = , 16 16 16 1 P r(R4 , SD16 ) = + = = Pr(R8 , SD16 ) = + = 1, Pr(R16 , SD16 ) = 16 2 16 Pr(R1 , SD16 ) = Pr(T0 , SD16 ) = Pr(T1 , SD16 ) = Pr(T2 , SD16 ) = Pr(T3 , SD16 ) = Pr(T4 , SD16 ) = Pr(T5 , SD16 ) = Pr(T6 , SD16 ) = Pr(T7 , SD16 ) = Pr(T8 , SD16 ) 1 = Pr(T10 , SD16 ) = Pr(T12 , SD16 ) = Pr(T14 , SD16 ) = + = ; 16 16 2+1 11 = , Pr(U2,0 , SD16 ) = Pr(U2,1 , SD16 ) = + 32 32 4+2 Pr(U4,0 , SD16 ) = Pr(U4,1 , SD16 ) = Pr(U4,2 , SD16 ) = Pr(U4,3 , SD16 ) = + = , 32 16 1 Pr(U8,0 , SD16 ) = Pr(U8,2 , SD16 ) = Pr(U8,4 , SD16 ) = Pr(U8,6 , SD16 ) = + = ; 16 16 11 Pr(SD16 , SD16 ) = Pr(SD16 ) = 32 55 17 KHÔNG GIAN CÁC HÀM LIÊN TỤC Nhận xét Định lý Arzelà - Ascoli khơng cịn C0 (A) A ⊂ Rn khơng compact Ví dụ lấy C0b (R) không gian hàm liên tục bị chặn R, nghĩa   0 Cb (R) := f ∈ C (R) : sup |f | < ∞ R Khi dễ thấy (C0b (R), ∥.∥∞ ) không gian Banach Giả sử f : R → R hàm định nghĩa ( − |x| x ≤ f (x) = x > Giả sử h : R → R, (h = 1, 2, ) định nghĩa fh (x) := f (x + h) giả sử F := {fh : h ∈ N} Khi dễ thấy họ hàm F ⊂ C0b (R) bị chặn liên tục Tuy nhiên F không compact (C0b (R), ∥.∥∞ ) Thật vậy, ý ∃f (x) := lim fh (x) = 0, ∀x ∈ R ∥fh − f ∥∞ = 1, ∀h h→∞ Điều có nghĩa dãy hội tụ (fh )h (C0b (R), ∥.∥∞ ) khơng chấp nhận Tính tách (C0b (R), ∥.∥∞ ) Định nghĩa 18 Giả sử (X, τ ) khơng gian topo Khi (X, τ ) gọi thỏa mãn tiên đề hai tính đếm có sở đếm cho topo τ Định lý 21 Giả sử (X, d) khơng gian metric Khi (i) (X, d) tách thỏa tiên đề thứ hai tính đếm (ii) Mỗi khơng gian (X, d) tách (X, d) tách 56 (iii) Giả sử (Y, ϱ) không gian metric khác T : (X, d) → (Y, ϱ) đồng cấu Khi (X, d) tách (Y, ϱ) tách Nhận xét Phải nhấn mạnh mục quan trọng giải tích cho mục xấp xỉ Nghĩ số hợp lý chứng minh định lý Ascoli Cuối phải nhớ lại tiêu chuẩn để kiểm tra không gian topo không gian tách Mệnh đề 37 Giả sử (X, τ ) không gian topo Giả sử tồn họ {Ui : i ∈ I} thỏa mãn (i) Ui tập mở với i ∈ I ; (ii) Ui ∪ Uj = ∅ i ̸= j (iii) I khơng đêm Khi (X, τ ) không tách Bài tập Giả sử l∞ := {x ∈ RN : sup |x(n)| < ∞} n∈N trang bị chuẩn ∥x∥l∞ := sup |x(n)| n∈N Hãy (l∞ , ∥.∥l∞ ) không gian Banach không tách Gợi ý: Giả sử I = 2N := {x : N → {0, 1}} ⊂ l∞ Ux = Bl∞  x,  n := y ∈ l ∞ : ∥y − x∥l∞ < o x ∈ I Khi ta xét họ {Ux : x ∈ I} sử dụng mệnh đề ?? Định lý 22 Giả sử K ⊂ Rn tập compact Khi (C0 (K), ∥.∥∞ ) tách 57 Chúng ta chứng minh cho trường hợp n = 1, K = [a, b] Trước ta cần phải nêu kết xấp xỉ quan trọng tốn giải tích Định lý 23 (Định lý xấp xỉ Weierstrass) Giả sử f ∈ C([a, b]) Khi tồn dãy hàm đa thức ph : R → R, (h = 1, 2, ) với hệ số thực, nghĩa ph ∈ R[x], thỏa mãn ph → f [a, b] Nhận xét Bởi đa thức hàm đơn giản nhất, máy tính trực tiếp đánh giá đa thức Định lý có ý nghĩa lý thuyết thực tiễn Đặc biệt nội suy đa thức Chứng minh định lý ?? Chúng ta cần kết n = K = [a, b] Giả sử D tập hợp hàm đa thức với hệ số hữu tỷ, nghĩa là, D := Q[x] Ta biết D đếm Chứng minh D trù mật C0 ([a, b]), ∥.∥∞ ) tức ∀f ∈ C0 ([a, b]), ∀ϵ > 0, ∃q ∈ D cho ∥f − q∥∞ ≤ ϵ Từ định lý xấp xỉ Weierstrass, với ϵ > 0, tồn p ∈ R[x], nghĩa là, p(x) = αm xm + · · · + α1 x1 + α0 , với αi ∈ R, i = 0, 1, , m thỏa mãn ∥f − p∥∞ < ϵ (14) Định nghĩa q(x) := βm xm + · · · + β1 x1 + β0 với βi ∈ Q ϵ |αi − βi | < Pm i=0 c i , i = 0, 1, , m, c := max{|a|, |b|} Khi |p(x) − q(x)| ≤ m X i=0 ϵ |αi − βi ||x|i ≤ , ∀x ∈ [a, b] Do đó, từ (??) (??) ta ∥f − q∥∞ ≤ ∥f − p∥∞ + ∥p − q∥∞ ≤ ϵ ϵ + = ϵ 2 (15) 58 18 Các khái niệm Định nghĩa 19 Cho tập hợp R khác rỗng, R ta trang bị hai phép toán mà ta gọi phép cộng phép nhân thỏa mãn: R nhóm Abel với phép tốn cộng, R nửa nhóm với phép tốn nhân phép tốn nhân phân phối với phép toán cộng, nghĩa x(y + z) = xy + xz, (x + y)z = zx + yz với x, y, z ∈ R Phần tử trung hòa phép cộng ký hiệu (thường gọi phần tử không) Phần tử đơn vị phép nhân có ký hiệu Nếu vành có nhiều phần tử có đơn vị ̸= Định nghĩa 20 Tập A vành R gọi vành R A vành hai phép toán cộng nhân R (bao gồm tính đóng hai phép tốn A) Định nghĩa 21 Ideal trái (phải) vành R vành A thỏa mãn điều kiện ∈ A(ar ∈ A), a ∈ A, r ∈ R Vành I R vừa ideal trái, vừa ideal phải gọi ideal vành R Cho I ideal vành R, ta ký hiệu R/I =: {r + I|r ∈ R} gọi tập thương R theo I Trên tập thương R/I ta xây dựng hai phép toán (x + I) + (y + I) = (x + y) + I, (x + I)(y + I) = (xy) + I với x, y ∈ R Định nghĩa 22 Tập thương R/I với hai phép toán xác định lập thành vành gọi vành thương R theo I 59 18.0.1 Định lý đồng cấu vành Định nghĩa 23 Cho R, R′ hai vành Ánh xạ f : R → R′ gọi đồng cấu vành f bảo toàn hai phép toán cộng nhân R, nghĩa f (x + y) = f (x) + f (y), f (xy) = f (x)f (x), với x, y ∈ R 18.0.2 19 Một số kết liên quan Không gian hàm liên tục C0 (Ω) Định nghĩa 24 (i) Cho tập A ⊂ Rn , C0 (A) := {f : A → R, f liên tục x ∈ A} (ii) Cho K ⊂ Rn tập compact cho f ∈ C0 (K) Ta ký hiệu ∥f ∥∞ số thực không âm xác định ∥f ∥∞ = ∥f ∥∞,K = sup |f (x)| x∈K ∥.∥∞ gọi chuẩn (hay chuẩn vô cùng) Định lý 24 Cho Ω ⊂ Rn tập mở bị chặn Khi (C0 (Ω), ∥.∥∞ ) không gian Banach vô hạn chiều Chứng minh Ta giới hạn n = Ω = (a, b) ta phải chứng minh (C0 (Ω), ∥.∥∞ ) không gian định chuẩn vô hạn chiều R Ta chứng minh khơng gian Banach Nghĩa phải dãy Cauchy (fh )h ⊂ (C0 (Ω), ∥.∥∞ ) hội tụ (tại phần tử thuộc không gian) Giả sử (fh )h dãy Cauchy, theo định nghĩa ta có, ∀ϵ > 0, ∃k ∈ N cho ∥fh − fk ∥∞ = sup |fh (x) − fk (x)| < ϵ ∀h, k ≥ k x∈Ω Điều có nghĩa ∀ϵ > 0, ∃k ∈ N cho |fh (x) − fk (x)| < ϵ ∀h, k ≥ k, ∀x ∈ Ω (16) 60 Từ (73), (fh (x))h ⊂ R dãy Cauchy Do dó: ∃f (x) := lim fh (x), h→∞ ∀x ∈ Ω (17) Từ (74), lấy qua giới hạn (73), cho k → ∞ ta ∀ϵ > 0, ∃k ∈ N cho |fh (x) − f (x)| ≤ ϵ ∀h ≥ k, x ∈ Ω, theo định nghĩa fh → f Ω Do dó f ∈ C0 (Ω) Tính compact (C0 (Ω), ∥.∥∞ ) Bây tìm hiểu đặc trưng tập compact (C0 (Ω), ∥.∥∞ ) Đầu tiên ta nhớ lại số khái niệm kết quan trọng liên quan đến chủ đề compact không gian metric Định nghĩa 25 Cho (X, d) không gian metric ký hiệu B(x, r) hình cầu mở X , tâm x bán kính r > với x ∈ X (i) Điểm x0 ∈ X gọi điểm giới hạn tập A ⊂ X A ∩ (B(x0 , r)\{x0 }) ̸= ∅, ∀r > (ii) Tập A ⊂ X gọi bị chặn tồn R0 > cho d(x, y) ≤ R0 với x, y ∈ A (iii) Tập A ∩ X gọi bị chặn hoàn toàn với ϵ > 0, A phủ họ hữu hạn hình cầu B(x1 , ϵ), B(x2 , ϵ), , B(xN , ϵ), nghĩa A ⊂ ∪N i=1 B(xi , ϵ) (iv) Họ A ⊂ X gọi compact dãy dãy A có dãy hội tụ điểm thuộc A (v) Tập A ⊂ X gọi có tính chất Bolzano-Weierstrass (BW) tập vơ hạn A có điểm giới hạn thuộc A Nhận xét 10 Dễ thấy tập bị chặn hoàn toàn tập bị chặn, điều ngược lại không không gian topo (X, τ ) tập hợp compact tập hợp compact dãy có tính chất (BW) Các tính chất khơng cịn giữ trường hợp tổng qt 61 Định lý 25 (Các tiên đề chuẩn tập compact không gian metric) Nếu A tập khơng gian metric (X, d), ta có điều sau tương đương: (i) A compact; (ii) A compact dãy; (iii) (A, d) đầy đủ bị chặn hồn tồn; (iv) A có tính chất BW Nhận xét 11 Nếu (X, d) đầy đủ, A ⊆ X đóng (A, d) đầy đủ Hệ Cho A ⊂ Rn Khi đó: A compact ⇔ A đóng bị chặn Định lý 26 (Riesz) Cho (E, ∥.∥) không gian định chuẩn ta ký hiệu BE := {x ∈ E : ∥x∥ ≤ 1} Khi BE compact dimR E < ∞ Nhận xét 12 Định lý 49 cho tập A bị chặn không gian định chuẩn vô hạn chiều (E, ∥.∥) khơng thiết phải bị chặn hồn tồn Ví dụ A = BE Định nghĩa 26 Cho A ⊂ Rn Một họ tập F ⊂ C0 (A) gọi tựa liên tục với ϵ > 0, ∃δ(ϵ) > cho f ∈ F, |f (x) − f (y)| < ϵ với x, y ∈ A thỏa |x − y| < δ Ta thêm tiên đề chuẩn tập compact (C0 (K), ∥.∥∞ ) K ⊂ Rn compact Định lý 27 (Arzelà - Ascoli) Cho K ⊂ Rn compact giả sử F ⊂ C0 (K) Khi F compact (C0 (K), ∥.∥∞ ) F là: (i) đóng (C0 (K), ∥.∥∞ ); (ii) bị chặn (C0 (K), ∥.∥∞ ); (iii) liên tục 62 Hệ Cho K ⊂ Rn compact cho F ⊂ C0 (K) Giả sử F bị chặn liên tục Khi F compact (C0 (K), ∥.∥∞ ) Cụ thể hệ cho ta kết đặc biệt sau Hệ Cho fh : [a, b] → R, (h = 1, 2, ) dãy hàm liên tục Giả sử rằng: (i) ∃M > cho |f (x) ≤ M, ∀x ∈ [a, b], ∀h (ii) (fh )h liên tục đều, nghĩa là, ∀ϵ > 0, ∃δ(ϵ) > cho |fh (x) − fh (y)| < ϵ, ∀x, y ∈ [a, b] với |x − y| < δ, ∀h Khi ta có dãy (fhk )k hàm f ∈ C0 ([a, b]) thỏa mãn fhk → f [a, b] Định lý 28 Giả sử M > số cho trước F = {f ∈ C1 ([a, b]) : ∥.∥C1 ≤ M } Khi F tập compact tương đối (C0 ([a, b]), ∥.∥∞ ); Chứng minh định lý 50 Tính đầy đủ: Giả sử có (i), (ii) (iii) ta F compact Theo tính chất tập compact định lý 48 ta F compact dãy Vì dãy (fh )h ∈ F có dãy (fhk )k hội tụ hàm f ∈ F , nghĩa là, ∥fhk − f ∥∞ → k → ∞ Nhớ K compact tách Giả sử D := {xi : i ∈ N} đếm trù mật K F bị chặn nghĩa tồn M1 > thỏa mãn ∥f − g∥∞ ≤ M1 , ∀f, g ∈ F Cụ thể ta thay f0 ∈ F , đó: ∥f0 − fh ∥∞ ≤ M1 , ∀h ∈ N Hơn ∥fh ∥∞ = ∥(fh − f0 ) + f0 ∥∞ ≤ ∥fh − f0 ∥∞ + ∥f0 ∥∞ ≤ M1 + ∥f0 ∥∞ := M2 63 Do ta có số M2 > thỏa mãn |fh (x)| ≤ M2 , ∀x ∈ K, ∀h Bây ta xây dựng dãy hội tụ theo trình chéo Cantor Bước 1: (fh (x1 ))h dãy số thực [−M2 , M2 ] Suy dãy có dãy (fh(1) (x1 ))h hội tụ R; Bước 2: Xét dãy (fh(1) (x2 ))h ⊂ [−M2 , M2 ] Do dãy (fh(2) (x2 ))h hội tụ Chú ý dãy (fh(2) (x1 ))h hội tụ có dãy (fh(1) (x1 ))h hội tụ Tiếp tục trình ta Bước k: Một dãy (fh(k) )h (fh(k−1) )h thỏa mãn (fhk (xj ))h hội tụ với j = 1, k Ta có tình sau đây: Định nghĩa: gk := fkk : K → R Lưu ý rằng, i = 1, 2, , dãy (gk )k≥i dãy (fki )k≥i Cụ thể, dãy (gk )k dãy (fh )h theo cách xây dựng ∀x ∈ D (18) (gk )k hội tụ (C0 (K), ∥.∥∞ ) (19) (gk (x))k hội tụ R Tiếp tục trình ta Sử dụng giả thiết F liên tục đều, tức ∀ϵ > 0, ∃δ(ϵ) > : x, y ∈ K |x−y| < δ ⇒ |f (x)−f (y)| < ϵ, ∀f ∈ F (20) Với ϵ > thay đổi tùy ý, δ thay đổi Bởi K bị chặn hồn tồn, σ > có họ hữu hạn hình cầu B(x1 , σ), , B(xN , σ) Rn thỏa mãn N = N (σ), xi ∈ K với i = 1, , N K⊂ n [ i=1 B(xi , σ) 64 Do tính trù mật D K , tồn yi ∈ D ∩ B(xi , σ) với i = 1, , N Cụ thể n \ K⊂ B(yi , 2σ) i=1 Vì ta chọn σ = δ/2 Khi tồn N = N (σ) = N (δ) = N (ϵ) D′ := {y1 , , yn } ⊂ D thỏa mãn K⊂ N [ (21) B(yi , δ) i=1 Từ (75) dãy (gk (y1 ))k , , (gk (yN ))k , ¯ hội tụ, có số nguyên k¯ = k(ϵ) với |gk (yi ) − gr (yi )|, ϵ ¯ ∀i = 1, , N ∀k, r > k, Theo (78) (77) ∀x ∈ K, ∃yi ∈ D′ thỏa |x − yi | < δ ⇒ |gk (x) − gk (yi )| < ϵ, ∀k ∈ N Từ ta có |gk (x)−gr (x)| ≤ |gk (x)−gk (yi )|+|gk (yi )−gr (yi )|+|gr (yi )−gr (x)| ≤ ϵ+ϵ+ϵ = 3ϵ ∀x ∈ K ¯ với k, r ≥ k¯ Điều có nghĩa ϵ > tồn k¯ = k(ϵ) thỏa ∥gk − gr ∥∞ ≤ 3ϵ ¯ ∀k, r > k Nghĩa (gk )k dãy Cauchy (C0 (K), ∥.∥∞ ) Từ (C0 (K), ∥.∥∞ ) đầy đủ F đóng, suy tồn f ∈ F thỏa mãn lim ∥gk − f ∥∞ = k→∞ Từ (gk )k dãy dãy (fh )h , phải F compact dãy Sự cần thiết: Cần rằng, F compact (C0 (K), ∥.∥∞ ) ta có (i), (ii) (iii) Giả sử F compact không gian metric (C0 (K), ∥.∥∞ ), đó, theo tính chất tập compact khơng gian metric, F đóng bị chặn hồn tồn bị chặn Chỉ

Ngày đăng: 03/07/2023, 11:33

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w