Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 151 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
151
Dung lượng
5,19 MB
Nội dung
ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC KHOA HỌC TRẦN SĨ THÀNH VẬT LIỆU TRÊN CƠ SỞ CARBON HOẠT TÍNH: TỔNG HỢP VÀ ỨNG DỤNG LUẬN ÁN TIẾN SĨ NGÀNH HÓA LÝ THUYẾT VÀ HÓA LÝ HUẾ – NĂM 2023 ĐẠI HỌC HUẾ TRƯỜNG ĐẠI HỌC KHOA HỌC TRẦN SĨ THÀNH VẬT LIỆU TRÊN CƠ SỞ CARBON HOẠT TÍNH: TỔNG HỢP VÀ ỨNG DỤNG Ngành: HÓA LÝ THUYẾT VÀ HÓA LÝ Mã số: 9.44.01.19 LUẬN ÁN TIẾN SĨ HOÁ LÝ THUYẾT VÀ HOÁ LÝ Người hướng dẫn khoa học: GS.TS ĐINH QUANG KHIẾU TS PHAN TỨ QUÝ HUẾ – NĂM 2023 MỞ ĐẦU Carbon hoạt tính (Activated carbon, viết tắt AC) điều chế từ chất giàu carbon vỏ trấu, vỏ lạc, rơm rạ bã mía, Có nhiều cơng trình đăng tải tạp chí quốc tế vấn đề tính đa dạng tiền chất sinh khối sinh học nguồn carbon hoạt tính đa dạng Vì làm tạo nguồn carbon rẻ tiền, có độ tinh khiết có hoạt tính hấp phụ cao thách thức nhà nghiên cứu Việt Nam có nguồn vỏ trấu dồi từ sản phẩm phụ nơng nghiệp Việc tối ưu hóa điều kiện tổng hợp lựa chọn chất hoạt hóa thích hợp tạo carbon có hoạt tính hấp phụ tốt Vật liệu ZIFs (Zeolite imidazolate frameworks) nhóm vật liệu khung hữu kim loại (MOF) với kết hợp ion kim loại chuyển tiếp (Zn2+, Co2+…) ion imidazole để tạo thành mạng 3D tương tự zeolite ZIF-11 có cấu trúc trực thoi (kiểu RHO-rhobohedral) tạo thành từ ion Zn2+ phối tử benzimidazole, có độ bền nhiệt thuỷ nhiệt cao Mặc dù vật liệu ZIF-11 có số ưu điểm diện tích bề mặt lớn, hệ thống mao quản đồng vị trí kích hoạt phong phú, vật liệu có độ dẫn điện hạn chế ứng dụng lĩnh vực điện hóa Do đó, tổng hợp ZIF-11 với carbon hoạt tính điều chế từ vỏ trấu (RHAC) có khả tạo thành composite tiềm cho ứng dụng điện hóa, khắc phục nhược điểm hai loại vật liệu ZIF-11 RHAC Chúng điều chế điện cực biến tính vật liệu ZIF-11/RHAC dùng để xác định nhanh trichlosan (TCS) có giới hạn phát 0,076 μM Các compsite carbon than hoạt tính xem chất biến tính điện hóa tiềm để chế tạo điện cực cho phân tích định lượng Có thể kể đến số vật liệu lĩnh vực sắt pha tạp carbon xốp, nano đồng pha tạp nitrogen [13], ống nano carbon đa tường cetyltrimethylammonium bromide poly(diphenylamine) [65], hạt nano paladium/graphene oxide dạng khử [159], vật liệu lai graphene oxide dạng khử carbon xốp [163], hạt nano CoMoO4 [145] MoS2 [37] Tuy nhiên, theo hiểu biết chúng tơi, có cơng trình sử dụng than hoạt tính hay composite có nguồn gốc từ vỏ trấu để chế tạo điện cực xác định chloramphenicol (CP) phương pháp điện hóa Các phương pháp phân tích khác sử dụng để xác định CP nước hồ nuôi tôm TCS mỹ phẩm [5] [63] Tuy nhiên, hầu hết phương pháp tốn nhiều thời gian Phương pháp volt-ampere xung vi phân (DPV) xem phương pháp phân tích định lượng chất hữu vơ phổ biến phân tích nhanh, độ chọn lọc độ nhạy cao, giá thành rẻ, dễ vận hành sử dụng phân tích trực tiếp mơi trường Biến tính điện cực than thủy tinh (GCE) vật liệu xốp nhiều nhà khoa học quan tâm cải thiện đáng kể độ chọn lọc, giới hạn phát thấp [106] Việc tìm kiếm composite tiên tiến để phát triển điện cực dùng phương pháp nhiều nhà khoa học quan tâm Titanium oxide (TiO2) chất bán dẫn phổ biến với vùng cấm rộng (khoảng 3,2 eV) [108] sử dụng làm chất xúc tác quang hóa [39] Tuy nhiên, khả thủy phân cao Ti(IV), nên TiO2 từ tiền chất alkoxide chloride dễ bị thủy phân kết tụ Để khắc phục nhược điểm này, nhà khoa học tạo phức titianium hòa tan nước kiểm sốt thành phần hình thái TiO2[105] Vật liệu TiO2/RHAC tổng hợp từ phức peroxo-hydroxo titanium than hoạt tính từ tro trấu có diện tích bề mặt lớn có khả hấp phụ tốt methylene blue, methyl orange methyl red Trong luận án này, tập trung nghiên cứu tổng hợp composite carbon hoạt tính để phát triển loại điện cực xúc tác quang Từ đó, chúng tơi ứng dụng điện cực phát triển để xác định số chất hữu có hóa mỹ phẩm sinh phẩm phương pháp voltampere hòa tan đồng thời nghiên cứu xử lý nước thải công nghiệp chứa hợp chất hữu khó phân huỷ thuốc nhuộm (methylene blue, methyl orange, methyl red) nhờ trình tự làm xúc tác quang Chính vậy, chúng tơi chọn “ Vật liệu sở carbon hoạt tính: Tổng hợp ứng dụng” làm đề tài nghiên cứu Mục tiêu luận án Tổng hợp vật liệu sở carbon hoạt tính có tính chất bề mặt lớn, khả hấp phụ ba cấu tử cảm biến điện hóa Nội dung luận án - Nghiên cứu tổng hợp carbon hoạt tính từ vỏ trấu (RHAC) ứng dụng để xác định hợp chất hữu sinh phẩm - Nghiên cứu tổng hợp ZIF-11/RHAC ứng dụng để xác định chất hữu mẫu mỹ phẩm - Nghiên cứu tổng hợp vật liệu TiO2/RHAC ứng dụng làm chất hấp phụ đồng thời đa cấu tử tái sử dụng Những đóng góp luận án Chúng tổng hợp thành công vật liệu có nguồn gốc từ phụ phẩm nơng nghiệp (vỏ trấu) gồm RHAC, ZIF-11/RHAC, TiO2/RHAC có độ xốp cao diện tích bề mặt riêng lớn Phát triển phương pháp phân tích điện hóa chloramphenicol (CP) dùng điện cực GCE biến tính RHAC, trichlosan (TCS) dùng điện cực GCE biến tính bỡi ZIF-11/RHAC phương pháp volt-ampere xung vi phân (DP-ASV) Kết thu tương đồng so với phương pháp sắc ký hiệu cao (HPLC) - Điện cực biến tính RHAC/GCE có khoảng tuyến tính xác định CP từ 0,95 – 5,76 μM giới hạn phát thấp 0,66 μM Kết cơng bố tạp chí ECS Journal of Solid State Science and Technology (2021; SCIE, Q3, IF = 2,48) - Điện cực biến tính ZIF-11/RHAC/GCE có khoảng tuyến tính xác định TCS thí nghiệm tính toán từ 0,1 – μM với giới hạn phát 0,076 μM Phương pháp đề xuất sử dụng thành công để phát TCS mẫu sản phẩm chăm sóc da mỹ phẩm với độ xác cao Kết cơng bố tạp chí Journal of Nanomaterials, 01/10/2021 (SCIE, Q2, IF = 3,791) Vật liệu TiO2/RHAC có khả hấp phụ đồng thời ba cấu tử methylene blue, methyl red methyl orange Vật liệu TiO2/RHAC có khả tái sử dụng tốt cách tự làm chiếu sáng ánh sáng khả kiến hiệu hấp phụ trì sau ba lần tái sử dụng 96% Cấu trúc khả hấp phụ vật liệu TiO2/RHAC thay đổi, chứng tỏ vật liệu bền có tiềm cho ứng dụng thực tế Kết cơng bố tạp chí Hindawi Adsorption Science & Technology, 20/01/2023 (SCIE, Q2, IF = 4,373) Luận án bố cục sau: – Mở đầu – Chương 1: Tổng quan tài liệu – Chương 2: Nội dung phương pháp nghiên cứu – Chương 3: Kết thảo luận – Kết luận luận án – Tài liệu tham khảo Chương TỔNG QUAN VỀ VẬT LIỆU 1.1 Than hoạt tính 1.1.1 Giới thiệu chung Hiện nay, than hoạt tính (AC) loại vật liệu sử dụng rộng rãi cho ứng dụng điện hóa chi phí thấp, diện tích bề mặt lớn độ dẫn điện cao [12] Than hoạt tính sản xuất từ số loại nguyên liệu thô giàu carbon than, trấu gỗ [12] Việc điều chế AC thường tiến hành hai giai đoạn: thứ nhất, ngun liệu thơ carbon hóa nhiệt độ thấp thứ hai hoạt hóa nhiệt độ cao [169] Vỏ trấu phụ phẩm nông nghiệp nhiều nước nhiệt đới Vỏ trấu (RH) chứa 37% nguyên tố carbon theo khối lượng [41] nên phù hợp để sản xuất AC Trong q trình điều chế carbon hoạt tính, silica vỏ trấu phải loại bỏ trước hoạt hóa để đảm bảo thu AC có hàm lượng carbon cao [82] Q trình nhiệt phân khí hóa sinh khối có khả tạo than, dầu khí đốt [104] Quá trình xử lý nhiệt, loại ẩm thành phần bay sinh khối cho phép thu than có đặc tính khác với vật liệu ban đầu Sự khác biệt chủ yếu độ xốp, diện tích bề mặt, cấu trúc vi mao quản, mao quản trung bình, đại mao quản đặc trưng hóa lý thành phần nguyên tố hàm lượng tro [46] Những thay đổi tính chất dẫn đến khả hấp phụ tốt hơn; đó, việc sử dụng than sinh khối làm vật liệu hấp phụ trở nên phổ biến [104] than sinh khối trở thành sản phẩm hấp dẫn với ứng dụng rộng rãi sản xuất carbon hoạt tính, làm chất hấp phụ xử lý nhiệm khơng khí, kiểm soát xử lý nước thải [32] Than hoạt tính có diện tích bề mặt bên lớn độ xốp cao Về mặt thương mại, than hoạt tính điều chế từ phụ phẩm nông nghiệp rẽ tiền; than hoạt tính vật liệu hấp phụ để loại bỏ hợp chất hữu từ khơng khí nước Chúng thường đóng vai trị chất mang xúc tác Bất kỳ vật liệu rẻ tiền với hàm lượng carbon cao khống chất vơ sử dụng làm nguyên liệu để sản xuất AC [137] Phụ phẩm nông nghiệp ngun liệu thơ để sản xuất AC chúng dồi rẻ Than hoạt tính sản xuất từ nguyên liệu có độ bền học đáng kể, hàm lượng tro thấp khả hấp phụ cao [116] Nguyên liệu để sản xuất AC từ phụ phẩm nơng nghiệp bao gồm lúa mì [69], vỏ cứng ô liu [89], bã mía [89], gỗ bạch dương [89], vỏ hướng dương [46], tùng [46], hạt cải dầu [46], bã liu [46], bạch đàn [24], bã mía [24], vỏ hạnh nhân [116], hạt nho [116], rơm [89], vỏ yến mạch [169], râu ngô [169], vỏ lạc [41], lõi ngô [137], vỏ ngô [169], trấu [85] rơm rạ [97] 1.1.2 Điều chế than hoạt tính Nói chung, có hai bước để sản xuất than hoạt tính Bước carbon hóa nguyên liệu giàu carbon tre, nứa vỏ trấu điều kiện khơng có oxygen 800 °C Bước gọi nhiệt phân Bước hai hoạt hóa sản phẩm than phương pháp vật lý hay hóa học Bảng 1.1 trình bày thành phần số phụ phẩm nông nghiệp [122] với lượng lớn toàn giới bao gồm rơm rạ, lúa gạo, lúa mỳ, loại gỗ…Fan cộng cơng bố q trình điều chế than hoạt tính từ râu ngô vỏ yến mạch [32] Không cần xử lý sơ trước, trình nhiệt phân nhanh thực lị phản ứng tầng sơi khí nitrogen Zhang cộng [169] nghiên cứu q trình carbon hóa râu ngơ lị phản ứng tầng sôi 500 °C Tuy nhiên, nhiệt độ nhiệt phân cao làm giảm hiệu suất tạo than AC Theo Putun cộng [104], nhiệt độ tăng lên hàm lượng tro tỷ lệ carbon cố định tăng lên, hàm lượng chất bay giảm Do đó, nhiệt độ cao tạo than có chất lượng cao Năng suất than giảm nhiệt độ tăng phân hủy sinh khối sơ cấp nhiều nhiệt độ cao thông qua phân hủy thứ cấp than Bảng 1.1 Thành phần số phụ phẩm nông nghiệp (% khối lượng) Phụ phẩm Độ nông nghiệp ẩm Chất Tro Nhiệt bay C H O S năng, kcal/kg 7,1 4,75 – 49,9 Thân bơng 13,3 – 41,23 5,03 Rơm lúa mì cứng 40 – – Thân ngô 6,4 – Rơm lúa mì mềm 15 13,7 69,8 – – – Cành nho 40 3,8 – 47,6 5,6 41,1 Lõi ngô 7,1 5,34 – 46,3 5,6 Lá củ cải đường 7,5 4,8 – 44,5 Rơm lúa mạch 15 4,9 Rơm rạ 25 Cành đào Cành ô liu N 43,4 0,7 34 2,63 3772 – – – 4278 0,13 4253 – – 4278 1,8 0,08 4011 42,19 0,57 4300 5,9 42,8 1,84 0,13 4230 – 46,8 5,53 41,9 0,41 0,06 4489 13,4 69,3 41,8 4,63 36,6 0,7 0,08 2900 40 79,1 53 5,9 39,1 0,32 0,05 4500 Cành hạnh nhân 40 – – – – – 4398 Rơm yến mạch 15 4,9 – 46 5,91 43,5 1,13 0,02 4321 Cây hướng dương 40 – 52,9 6,58 35,9 1,38 0,15 4971 Cành anh đào 40 84,2 Cành mơ 40 0,2 80,4 – – 45,53 6,15 – – 51,4 6,29 41,11 0,78 – – 4500 – – – 5198 41,2 0,8 0,1 4971 –: Khơng có số liệu Đối với q trình hoạt hóa vật lý gồm hai bước: Bước carbon hóa vật liệu giàu carbon; bước hai hoạt hóa nhiệt độ cao có mặt khí oxy hóa thích hợp carbon dioxide, nước, khơng khí hỗn hợp chúng Các chất khí sử dụng để hoạt hóa thường CO2 sạch, dễ xử lý dễ kiểm sốt q trình tốc độ phản ứng thấp nhiệt độ khoảng 800 °C [169] Trấu, lõi ngô, gỗ sồi, vỏ ngô, râu ngô, rơm rạ, vỏ hồ đào vỏ lạc [82], [156], [85] nguyên liệu thô xử lý phương pháp Nhiệt độ carbon hóa thường nằm khoảng 400–850 °C (đơi 1000 °C) nhiệt độ hoạt hóa từ 600 đến 900 °C Các loại vật liệu carbon hoạt hóa theo phương pháp vật lý thường khơng đạt tiêu chí để sử dụng làm chất hấp phụ làm lọc cao cấp Q trình hoạt hóa vật lý than từ gỗ sồi, vỏ ngô râu ngô [169] thực 700 800 °C thời gian h Đối với gỗ sồi, thời gian hoạt hóa lâu khả hấp phụ AC lớn Cấu trúc mao quản carbon từ gỗ sồi thay đổi đáng kể hoạt hóa khoảng thời gian khác 800 °C Diện tích bề mặt thể tích mao quản AC sản xuất từ vỏ ngô râu ngô cao đáng kể sau h kích hoạt so với sau h kích hoạt Bảng 1.2 trình bày hoạt hóa than phương pháp vật lý hóa học Bảng 1.2 Các phương pháp hoạt hóa Hoạt hóa Nguyên liệu TLTK Hạt dẻ cười, vỏ hạt hướng dương, tùng, hạt cải dầu, bã bông, bã ô liu, vỏ Vật lý lạc, vỏ hạnh nhân, sồi, vỏ ngô, vỏ ngô, rơm rạ, vỏ trấu, vỏ hồ đào, bã mía, [46],[169], [156], [85], [97] bánh ô liu Lõi ngô, hạt ô liu, trấu, rơm rạ, vỏ sắn, Hóa học vỏ hồ đào, vỏ hạt adamia, vỏ hạt phỉ, vỏ lạc, vỏ hạt mơ, vỏ hạnh nhân [12], [4], [138] [97], [130] Ô liu, rơm rạ, bạch dương, bã mía, Nhiệt phân miscanthus, vỏ lạc, vỏ hạt mơ, vỏ hạt nước anh đào, hạt nho, vỏ hạch, vỏ hạnh [89], [31] nhân, vỏ yến mạch Đối với hoạt hóa hóa học, hai bước thực đồng thời Tiền chất trộn với chất hoạt hóa (chất khử nước hay chất oxy hóa) Hoạt hóa hóa học có số lợi thực bước kết hợp carbon hóa với hoạt synthesis of RHO-type zeolitic imidazolate frameworks: synthesis and formation mechanism of ZIF-11 and ZIF-12 Dalt Trans 42(47):16608– 16613 48 Ho YS, McKay G (1998), A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents Process Saf Environ Prot 76(4):332–340 49 Holmström K, Gräslund S, Wahlström A, Poungshompoo S, Bengtsson BE, Kautsky N (2003), Antibiotic use in shrimp farming and implications for environmental impacts and human health Int J Food Sci Technol 38(3):255–266 50 Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM (1996), IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance Science (80- ) 271(5249):665–668 51 Huang JH, Huang KL, Liu SQ, Wang AT, Yan C (2008), Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution Colloids Surfaces A Physicochem Eng Asp 330(1):55–61 52 Huang XC, Lin YY, Zhang JP, Chen XM (2006), Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies Angew Chemie - Int Ed 45(10):1557– 1559 53 Iwuozor KO, Ighalo JO, Emenike EC, Ogunfowora LA, Igwegbe CA (2021), Adsorption of methyl orange: A review on adsorbent performance Curr Res Green Sustain Chem 4:100179 54 Jensen PA, Sander B, Dam-Johansen K (2001), Pretreatment of straw for power production by pyrolysis and char wash Biomass and Bioenergy 20(6):431–446 135 55 Jiao Y, Han D, Lu Y, Rong Y, Fang L, et al (2017), Characterization of pine-sawdust pyrolytic char activated by phosphoric acid through microwave irradiation and adsorption property toward CDNB in batch mode Desalin Water Treat 77:247–255 56 Jin H, Wang X, Gu Z, Hoefelmeyer JD, Muthukumarappan K, Julson J (2014), Graphitized activated carbon based on big bluestem as an electrode for supercapacitors RSC Adv 4(27):14136–14142 57 Kakihana M, Kobayashi M, Tomita K, Petrykin V (2010), Application of water-soluble titanium complexes as precursors for synthesis of titanium-containing oxides via aqueous solution processes Bull Chem Soc Jpn 83(11):1285–1308 58 Kakihana M, Tada M, Shiro M, Petrykin V, Osada M, Nakamura Y (2001), Structure and 8[Ti4(C6H4O7)4(O2)4]・8H2O 59 Stability of Water Soluble (NH4) Inorg Chem 40(16):891–894 Kaufmann A, Butcher P, Maden K, Walker S, Widmer M (2015), Determination of nitrofuran and chloramphenicol residues by high resolution mass spectrometry versus tandem quadrupole mass spectrometry Anal Chim Acta 862:41–52 60 Khan EA, Shahjahan, Khan TA (2018), Adsorption of methyl red on activated carbon derived from custard apple (Annona squamosa) fruit shell: Equilibrium isotherm and kinetic studies J Mol Liq 249:1195– 1211 61 Khan MA, Khan MI, Zafar S (2017), Removal of different anionic dyes from aqueous solution by anion exchange membrane Membr Water Treat 8(3):259–277 62 Kidnay AJ, Myers AL (1966), A simplified method for the prediction of multicomponent adsorption equilibria from single gas isotherms AIChE J 12(5):981–986 136 63 Kikuchi H, Sakai T, Teshima R, Nemoto S, Akiyama H (2017), Total determination of chloramphenicol residues in foods by liquid chromatography-tandem mass spectrometry Food Chem 230:589–593 64 Kim JR, Kan E (2015), Heterogeneous photo-Fenton oxidation of methylene blue using CdS-carbon nanotube/TiO2 under visible light J Ind Eng Chem 21:644–652 65 Kor K, Zarei K (2014), Electrochemical determination of chloramphenicol on glassy carbon electrode modified with multi-walled carbon nanotube-cetyltrimethylammonium bromide- poly(diphenylamine) J Electroanal Chem 733:3946 66 Kỹỗỹkosmanolu M, Gezici O, Ayar A (2006), The adsorption behaviors of Methylene Blue and Methyl Orange in a diaminoethane sporopolleninmediated column system Sep Purif Technol 52(2):280–287 67 Lamari R, Benotmane B, Mezali S (2021), Zeolite imidazolate framework-11 for efficient removal of Bromocresol Green in aqueous solution, isotherm kinetics, and thermodynamic studies Desalin Water Treat 224:407–420 68 Lamari R, Benotmane B, Mostefa F (2022), Removal of Methyl Orange from Aqueous Solution Using Zeolitic Imidazolate Framework-11: Adsorption Isotherms, Kinetics and Error Analysis Iran J Chem Chem Eng 41(6):1985–1999 69 Lanzetta M, Di Blasi C (1998), Pyrolysis kinetics of wheat and corn straw J Anal Appl Pyrolysis 44(2):181–192 70 Lataye, Hiradram D (2019), Removal of crystal violet and methylene blue dyes using Acacia nilotica sawdust activated carbon Indian J Chem Technol 26(1):52–68 71 Laviron E (1979), General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems J 137 Electroanal Chem 101(1):19–28 72 Leodopoulos C, Doulia D, Gimouhopoulos K, Triantis TM (2012), Single and simultaneous adsorption of methyl orange and humic acid onto bentonite Appl Clay Sci 70:84–90 73 Li B, Qiu Z, Wan Q, Liu Y, Yang N (2014), β‐cyclodextrin functionalized graphene nano platelets for electrochemical determination of trichlosan Phys status solidi 211(12):2773–2777 74 Li H, Deng Z, Tian Q, Lun L, Zhao P, et al (2022), Application of carbon nanotubes and zwitterionic surfactant-modified acetylene black electrode for the determination of trichlosan in household commodities Int J Environ Anal Chem 102(4):987–1000 75 Li Y, Li X, Li J, Yin J (2006), Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study Water Res 40(6):1119–1126 76 Li Y, Yan X, Hu X, Feng R, Zhou M (2019), Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water Chem Eng J 375:122003 77 Li Y, Zhang J, Liu H (2018), Removal of chloramphenicol from aqueous solution using low-cost activated carbon prepared from Typha orientalis Water (Switzerland) 10(4):351 78 Lin K-YA, Chang H-A (2015), Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water Chemosphere 139(1):624–631 79 Liu JX, Gao MY, Fang WH, Zhang L, Zhang J (2016), Bandgap Engineering of Titanium-Oxo Clusters: Labile Surface Sites Used for Ligand Substitution and Metal Incorporation Angew Chemie - Int Ed 55(17):5160–5165 80 Liu M, Li X, Du Y, Han R (2019), Adsorption of methyl blue from 138 solution using walnut shell and reuse in a secondary adsorption for Congo red Bioresour Technol Reports 5:238–242 81 Long D-L, Tsunashima R, Cronin L (2010), Polyoxometalates: building blocks for functional nanoscale systems Angew Chem Int Ed Engl 49(10):1736–1758 82 Lua AC, Yang T, Guo J (2004), Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells J Anal Appl Pyrolysis 72(2):279–28 83 Lucero JM, Self TJ, Carreon MA (2020), Synthesis of ZIF-11 crystals by microwave heating New J Chem 44(9):3562–3565 84 Malash GF, El-Khaiary MI (2010), Piecewise linear regression: A statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models Chem Eng J 163(3):256–263 85 Malik PK (2003), Use of activated carbons prepared from sawdust and rice-husk for adsoprtion of acid dyes: A case study of acid yellow 36 Dye Pigment 56(3):239–249 86 McGuire S (2011), U.S Department of Agriculture and U.S Department of Health and Human Services, Dietary Guidelines for Americans, 2010 7th Edition, Washington, DC: U.S Government Printing Office, January 2011 Adv Nutr 2(3):293–294 87 McKay G, Al Duri B (1987), Simplified model for the equilibrium adsorption of dyes from mixtures using activated carbon Chem Eng Process 22(3):145–156 88 Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y (2018), Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review Chem Eng Res Des 129:271–296 89 Minkova V, Razvigorova M, Bjornbom E, Zanzi R, Budinova T, Petrov 139 N (2001), Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass Fuel Process Technol 70(1):53–61 90 Mishra B, Varjani S, Agrawal DC, Mandal SK, Ngo HH, et al (2020), Engineering biocatalytic material for the remediation of pollutants: A comprehensive review Environ Technol Innov 20:101063 91 Moellmann J, Ehrlich S, Tonner R, Grimme S (2012), A DFT-D study of structural and energetic properties of TiO2 modifications J Phys Condens Matter 24(42):424206 92 Mohammadi N, Khani H, Gupta VK, Amereh E, Agarwal S (2011), Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies J Colloid Interface Sci 362(2):457–462 93 Motulsky H, Christopoulos A (2003), Fitting Models to Biological Data Using Linear and Nonlinear Regression.Fitting curves with GraphPad Prism GraphPad Prism Softw Inc., San Diego,California., pp 296–297 94 Munawar A, Tahir MA, Shaheen A, Lieberzeit PA, Khan WS, Bajwa SZ (2018), Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol J Hazard Mater 342:96–106 95 Ni ZM, Xia SJ, Wang LG, Xing FF, Pan GX (2007), Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: Adsorption property and kinetic studies J Colloid Interface Sci 316(2):284–291 96 Noguera-Díaz A, Villarroel-Rocha J, Ting VP, Bimbo N, Sapag K, Mays TJ (2019), Flexible ZIFs: probing guest-induced flexibility with CO2, N2 and Ar adsorption J Chem Technol Biotechnol 94(12):3787–3792 97 Oh GH, Park CR (2002), Preparation and characteristics of rice-straw- 140 based porous carbons with high adsorption capacity Fuel 81(3):327–336 98 Okman I, Karagöz S, Tay T, Erdem M (2014), Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide Appl Surf Sci 293:138–142 99 Oz M, Lorke DE, Hasan M, Petroianu GA (2011), Cellular and molecular actions of Methylene Blue in the nervous system Med Res Rev 31(1):93–117 100 Park KS, Ni Z, Côté AP, Choi JY, Huang R, et al (2006), Exceptional chemical and thermal stability of zeolitic imidazolate frameworks Proc Natl Acad Sci U S A 103(27):10186–10191 101 Pemberton RM, Hart JP (1999), Electrochemical behaviour of trichlosan at a screen-printed carbon electrode and its voltammetric determination in toothpaste and mouthrinse products Anal Chim Acta 390(1–3):107– 115 102 Pimentel BR, Jue ML, Zhou EK, Verploegh RJ, Leisen J, et al (2019), Sorption and Transport of Vapors in ZIF-11: Adsorption, Diffusion, and Linker Flexibility J Phys Chem C 123(20):12862–12870 103 Prausnitz JM, Myers AL (1963), Kihara parameters and second virial coefficients for cryogenic fluids and their mixtures AIChE J 9(1):5–11 104 Pütün AE, Özbay N, Önal EP, Pütün E (2005), Fixed-bed pyrolysis of cotton stalk for liquid and solid products Fuel Process Technol 86(11):1207–1219 105 Ragupathy S, Manikandan V, Devanesan S, Ahmed M, Ramamoorthy M, Priyadharsan A (2022), Enhanced sun light driven photocatalytic activity of Co doped SnO2 loaded corn cob activated carbon for methylene blue dye degradation Chemosphere 295:133848 106 Regiart M, Magallanes JL, Barrera D, Villarroel-Rocha J, Sapag K, et al (2016), An ordered mesoporous carbon modified electrochemical sensor 141 for solid-phase microextraction and determination of trichlosan in environmental samples Sensors Actuators B Chem 232:765–772 107 Reif B, Paula C, Fabisch F, Hartmann M, Kaspereit M, Schwieger W (2019), Synthesis of ZIF-11 – Influence of the synthesis parameters on the phase purity Microporous Mesoporous Mater 275:102–110 108 Rezaei SS, Kakavandi B, Noorisepehr M, Isari AA, Zabih S, Bashardoust P (2021), Photocatalytic oxidation of tetracycline by magnetic carbonsupported TiO2 nanoparticles catalyzed peroxydisulfate: Performance, synergy and reaction mechanism studies Sep Purif Technol 258:117936 109 Rich ML, Ritterhoff RJ, Hoffmann RJ (1950), A fatal case of aplastic anemia following chloramphenicol (chloromycetin) therapy Ann Intern Med 33(6):1459–1467 110 Ross S, Rice C, Burke FG, McGovern JJ, Parrott RH, McGovern JP (1952), Treatment of meningitis due to Haemophilus influenzae; use of chloromycetin and sulfadiazine N Engl J Med 247(15):541–547 111 Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, et al (1994), Recommendations for the characterization of porous solids (Technical Report) 66(8):1739–1758 112 Safak Boroglu M, Yumru AB (2017), Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation Sep Purif Technol 173:269–279 113 Samuel MS, Shah SS, Bhattacharya J, Subramaniam K, Pradeep Singh ND (2018), Adsorption of Pb(II) from aqueous solution using a magnetic chitosan/graphene oxide composite and its toxicity studies Int J Biol Macromol 115:1142–1150 114 Sandberg RG, Henderson GH, White RD, Eyring EM (1972), Kinetics of acid dissociation-ion recombination of aqueous methyl orange J Phys 142 Chem 76(26):4023–4025 115 Saranya SKSKS, Padil VVT, Senan C, Pilankatta R, Saranya SKK, et al (2018), Green synthesis of high temperature stable anatase titanium dioxide nanoparticles using gum kondagogu: Characterization and solar driven photocatalytic degradation of organic dye Nanomaterials 8(12):1002 116 Savova D, Apak E, Ekinci E, Yardim F, Petrov N, et al (2001) Biomass conversion to carbon adsorbents and gaas Biomass and Bioenergy 21(2):133–142 117 Shang TX, Ren RQ, Zhu YM, Jin XJ (2015), Oxygen- and nitrogen-codoped activated carbon from waste particleboard for potential application in high-performance capacitance Electrochim Acta 163:32–40 118 Sharafinia S, Farrokhnia A, Lemraski EG (2021), Comparative Study of Adsorption of Safranin o by TiO2/Activated Carbon and Chitosan/TiO2/Activated Carbon Adsorbents Phys Chem Res 9(4):605–621 119 Shih IK (1971), Photodegradation Products of Chloramphenicol in Aqueous Solution J Pharm Sci 60(12):1889–1890 120 Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, et al (1985), Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity S Pure Appl Chem 57(4):603–619 121 Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, et al (2007), Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO 2: Role of the specific surface area and of surface methylation of the particles Toxicol Appl Pharmacol 222(2):141–151 122 Skoulou V, Zabaniotou A (2007), Investigation of agricultural and 143 animal wastes in Greece and their allocation to potential application for energy production Renew Sustain Energy Rev 11(8):1698–1719 123 Soleymani J, Hasanzadeh M, Shadjou N, Khoubnasab Jafari M, Gharamaleki JV, et al (2016), A new kinetic-mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode Mater Sci Eng C Mater Biol Appl 61:638– 650 124 Sørum H (1999), Antibiotic resistance in aquaculture Acta Vet Scand Suppl 92:29–36 125 Sriram G, Kigga M, Uthappa UT, Rego RM, Thendral V, et al (2020), Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review Adv Colloid Interface Sci 282:102198 126 Srour RK, McDonald LM (2008), Determination of the acidity constants of methyl red and phenol red indicators in binary methanol - And ethanolwater mixtures J Chem Eng Data 53(1):116–127 127 Stavropoulos GG, Zabaniotou AA (2005), Production and characterization of activated carbons from olive-seed waste residue Microporous Mesoporous Mater 82(1–2):79–85 128 Stoeckli F, Centeno TA (2005), On the determination of surface areas in activated carbons Carbon N Y 43(6):1184–1190 129 Suarez CR, Ow EP (1992), Pediatric Cardiology Chloramphenicoi Toxicity Associated with Severe Cardiac Dysfunction Pediatr Cardiol 13:48–51 130 Sudaryanto Y, Hartono SB, Irawaty W, Hindarso H, Ismadji S (2006), High surface area activated carbon prepared from cassava peel by chemical activation Bioresour Technol 97(5):734–739 144 131 Sun RC, Tomkinson J (2001), Fractional separation and physicochemical analysis of lignins from the black liquor of oil palm trunk fibre pulping Sep Purif Technol 24(3):529–539 132 Suslick KS (1990), Sonochemistry Science 247(4949):1439–1445 133 Thanh Tu NT, Thien TV, Du PD, Thanh Chau VT, Mau TX, Khieu DQ (2018), Adsorptive removal of Congo red from aqueous solution using zeolitic imidazolate framework-67 J Environ Chem Eng 6(2):2269– 2280 134 Tian W, Lin J, Zhang H, Duan X, Wang H, et al (2022), Kinetics and mechanism of synergistic adsorption and persulfate activation by Ndoped porous carbon for antibiotics removals in single and binary solutions J Hazard Mater 423(Part A):127083 135 Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M (2006), A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method Angew Chem Int Ed Engl 45(15):2378–2381 136 Truong QD, Dien LX, Vo D-VN, Le TS (2017), Controlled synthesis of titania using water-soluble titanium complexes: A review J Solid State Chem 251:143–163 137 Tsai WT, Chang CY, Lee SL (1997), Preparation and characterization of activated carbons from corn cob Carbon N Y 35(8):1198–1200 138 Tsai WT, Chang CY, Wang SY, Chang CF, Chien SF, Sun HF (2001), Cleaner production of carbon adsorbents by utilizing agricultural waste corn cob Resour Conserv Recycl 32(1):43–53 139 Tung WS, Daoud WA (2011), Self-cleaning fibers via nanotechnology: A virtual reality J Mater Chem 21(22):7858–7869 140 Turchi CS, Ollis DF (1990), Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack J Catal 145 122(1):178–192 141 Vadivelan V, Vasanth Kumar K (2005), Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk J Colloid Interface Sci 286(1):90–100 142 Vatanpour V, Karimi H, Imanian Ghazanlou S, Mansourpanah Y, Ganjali MR, et al (2020), Anti-fouling polyethersulfone nanofiltration membranes aided by amine-functionalized boron nitride nanosheets with improved separation performance J Environ Chem Eng 8(6):104454 143 Vidal L, Chisvert A, Canals A, Psillakis E, Lapkin A, et al (2008), Chemically surface-modified carbon nanoparticle carrier for phenolic pollutants: Extraction and electrochemical determination of benzophenone-3 and trichlosan Anal Chim Acta 616(1):28–35 144 Viđas P, Balsalobre N, Hernández-Córdoba M (2006), Determination of chloramphenicol residues in animal feeds by liquid chromatography with photo-diode array detection Anal Chim Acta 558(1–2):11–15 145 Vinothkumar V, Abinaya M, Chen S-M (2021), Ultrasonic assisted preparation of CoMoO4 nanoparticles modified electrochemical sensor for chloramphenicol determination J Solid State Chem 302:122392 146 Wahl D (2005), Galvanotechnik 96:1600–1610 147 Wang B, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM (2008), Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs Nature 453:207–211 148 Wang K-L, Cheng H-M, Sung S-H, Chuang S-Y, Li C-H, et al (2010), Wave Reflection and Arterial Stiffness in the Prediction of 15-Year AllCause and Cardiovascular Mortalities Hypertension 55(3):799–805 149 Wu T, Li T, Liu Z, Guo Y, Dong C (2017), Electrochemical sensor for sensitive detection of trichlosan based on graphene/palladium nanoparticles hybrids Talanta 164:556–562 146 150 Xiong S, Tang Y, Ng HS, Zhao X, Jiang Z, et al (2013), Specific surface area of titanium dioxide (TiO2) particles influences cyto- and phototoxicity Toxicology 304:132–140 151 Yadav S, Yadav A, Bagotia N, Sharma AK, Kumar S (2022), Novel composites of Pennisetum glaucum with CNT: preparation, characterization and application for the removal of safranine O and methylene blue dyes from single and binary systems Biomass Convers Biorefinery 152 Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003), Reticular synthesis and the design of new materials Nature 423(6941):705–714 153 Yagub MT, Sen TK, Afroze S, Ang HM (2014), Dye and its removal from aqueous solution by adsorption: A review Adv Colloid Interface Sci 209:172184 154 Yalỗin N, Sevinỗ V (2000), Studies of the surface area and porosity of activated carbons prepared from rice husks Carbon N Y 38(14):1943– 1945 155 Yang J, Wang P, Zhang X, Wu K (2009), Electrochemical sensor for rapid detection of trichlosan using a multiwall carbon nanotube film J Agric Food Chem 57(20):9403–9407 156 Yang T, Lua AC (2003), Characteristics of activated carbons prepared from pistachio-nut shells by physical activation J Colloid Interface Sci 267(2):408–417 157 Yang XF, Li NB, Luo HQ (2012), Post-chemiluminescence determination of chloramphenicol based on luminolpotassiumperiodate system Luminescence 27(3):217–222 158 Yao Y, Bing H, Feifei X, Xiaofeng C (2011), Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes 147 Chem Eng J 170(1):82–89 159 Yi W, Li Z, Dong C, Li HW, Li J (2019), Electrochemical detection of chloramphenicol using palladium nanoparticles decorated reduced graphene oxide Microchem J 148:774–783 160 Yilmaz E, Sert E, Atalay FS (2016), Synthesis, characterization of a metal organic framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53 (Fe) J Taiwan Inst Chem Eng 65:323–330 161 Younis AI, Brackett BG, Fayrer-Hosken RA (1989), Influence of serum and hormones on bovine oocyte maturation and fertilization in vitro Gamete Res 23(2):189–201 162 Yu F, Wang L, Ma H, Pan Y (2019), Zeolitic imidazolate framework-8 modified active carbon fiber as an efficient cathode in electro-Fenton for tetracycline degradation Sep Purif Technol 237:116342 163 Yuan Y, Xu X, Xia J, Zhang F, Wang Z, Liu Q (2019), A hybrid material composed of reduced graphene oxide and porous carbon prepared by carbonization of a zeolitic imidazolate framework (type ZIF-8) for voltammetric determination of chloramphenicol Microchim Acta 186(3):191 164 Zaheer Z, AL-Asfar A, Aazam ES (2019), Adsorption of methyl red on biogenic Ag@Fe nanocomposite adsorbent: Isotherms, kinetics and mechanisms J Mol Liq 283:287–298 165 Zaki A (2014), Hydrothermally synthesized TiO2 nanotubes and nanosheets for photocatalytic degradation of color yellow sunset Int J Adv Res 2:285–291 166 Zhan C-H, Winter RS, Zheng Q, Yan J, Cameron JM, et al (2015), Assembly of Tungsten-Oxide-Based Pentagonal Motifs in Solution Leads to Nanoscale {W48}, {W56}, and {W92} Polyoxometalate Clusters Angew Chem Int Ed Engl 54(48):14308–14312 148 167 Zhang G, Liu C, Long D-L, Cronin L, Tung C-H, Wang Y (2016), WaterSoluble Pentagonal-Prismatic Titanium-Oxo Clusters J Am Chem Soc 138(35):11097–11100 168 Zhang J, Yan X, Zhang J, Cai W, Wu Z, Zhang Z (2012), Preparation and electrochemical performance of TiO2/C composite nanotubes as anode materials of lithium-ion batteries J Power Sources 198:223–228 169 Zhang T, Walawender WP, Fan LT, Fan M, Daugaard D, Brown RC (2004), Preparation of activated carbon from forest and agricultural residues through CO2 activation Chem Eng J 105(1):53–59 170 Zhang X, Zhang YC, Zhang JW (2016), A highly selective electrochemical sensor for chloramphenicol based on three-dimensional reduced graphene oxide architectures Talanta 161:567–573 171 Zheng J, Zhang M, Ling Y, Xu J, Hu S, et al (2018), Fabrication of one dimensional CNTs/Fe3O4@PPy/Pd magnetic composites for the accumulation and electrochemical detection of trichlosan J Electroanal Chem 818:97–105 149