Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 37 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
37
Dung lượng
1,52 MB
Nội dung
TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 Chủ đề QUAN HỆ VNG GĨC Lời giải phân mức độ nhận thức mang tính tham khảo, ý kiến đóng góp vui lòng gửi email địa chỉ: toanhocbactrungnam@gmail.com Câu 917 [1H3-1] Cho ba đường thẳng a , b , c Khẳng định sau đúng? A Nếu a c b c a // b B Nếu a c b c a b C Nếu a // b c b c a D Nếu a b b c a c Lời giải Chọn C Câu 918 [1H3-1] Container xe tải dùng để chở hàng hóa thường có dạng hình hộp chữ nhật Chúng ta mơ hình hóa thùng container hình hộp chữ nhật MNPQ.EFGH (tham khảo hình vẽ bên dưới) Chọn khẳng định sai nói hai đường thẳng vng góc khẳng định sau N P M Q A HE NF F E H C HE GP B HE MN G D HE QN Lời giải Chọn D HE NF Ta có HE MNFE nên A B HE HGPQ HE GP nên C HE MN Suy D sai Câu 919 [1H3-1] Cho lăng trụ đứng ABC ABC có đáy ABC vng B (xem hình vẽ) Hỏi đường thẳng BC vng góc với mặt phẳng liệt kê bốn phương án C B A C B A A BBA B AAC C ABC D ACC Lời giải Chọn A BC BA Ta có BC BBA BC BB Câu 920 [1H3-1] Cho hình hộp ABCD.EFGH (tham khảo hình vẽ) Tính tổng ba véctơ AB AD AE ta H E F G D A A AG B AH TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập C C AF Lời giải B D AC Trang 1/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 Chọn D Ta có AB AD AE AC AE AG Câu 921 [1H3-1] Trong hình học khơng gian hình bên hình biểu diễn hình vng qua phép chiếu song song? A B C Lời giải D Chọn B Lý thuyết Câu 922 [1H3-1] Cho đường thẳng d vng góc với mặt phẳng đường thẳng khác d Chọn khẳng định sai khẳng định sau: A Đường thẳng // d B Đường thẳng // d // C Đường thẳng // d D Đường thẳng // d Lời giải Chọn B Ta có d d A đúng, B sai //d Câu 923 [1H3-1] Chọn khẳng định sai khẳng định sau? A Hai mặt phẳng vng góc chúng cắt B Hai mặt phẳng cắt khơng vng góc C Hai mặt phẳng vng góc góc chúng 90 D Hai mặt phẳng có góc 90 chúng vng góc Lời giải Chọn B Hai mặt phẳng cắt vng góc với Câu 924 [1H3-1] Góc hai đường thẳng khơng gian góc giữa: A Hai đường thẳng cắt không song song với chúng B Hai đường thẳng vng góc với chúng C Hai đường thẳng qua điểm song song với chúng D Hai đường thẳng cắt vng góc với chúng Lời giải Chọn C Định nghĩa góc hai đường thẳng Câu 925 [1H3-1] Trong hình lập phương, mặt bên A Hình tam giác B Hình bình hành C Hình thoi D Hình vng Lời giải Chọn D Sử dụng định nghĩa hình lập phương SGK hình học 11CB trang 110 Câu 926 [1H3-1] Mệnh đề sai? A Đường thẳng vng góc với mặt phẳng góc chúng 90 B Góc hai đường thẳng góc vectơ phương đường thẳng C Hai mặt phẳng vng góc với góc chúng 90 D Góc hai mặt phẳng góc đường thẳng vng góc với mặt phẳng TỐN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 2/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TỐN 11 Lời giải Chọn B Góc hai đường thẳng khơng góc vectơ phương đường thẳng Câu 927 [1H3-1] Trong khơng gian, cho đường thẳng a , b , c phân biệt mặt phẳng P Mệnh đề sau đúng? A Nếu a b a b cắt chéo B Nếu a c mp P c a // P C Nếu a c b c a // b D Nếu a b b c a c Lời giải Chọn A Theo lý thuyết Câu 928 [1H3-1] Trong không gian, cho hai đường thẳng a b chéo Mệnh đề sai SAI? A Tồn mặt phẳng chứa a song song với b B Khoảng cách a b độ dài đường vuông góc chung a b C Tồn cặp mặt phẳng chứa đường thẳng a , b song song với D Tồn mặt phẳng chứa b song song với a Lời giải Chọn B Khoảng cách a b độ dài đoạn vng góc chung a b Câu 929 [1H3-1] Trong không gian, cho đường thẳng a mặt phẳng P Có mặt phẳng chứa đường thẳng a vng góc với mặt phẳng P A Có C Có vơ số B Có vơ số D Khơng có Lời giải Chọn C Nếu đường thẳng a vng góc với mặt phẳng P có vơ số mặt phẳng chứa đường thẳng a vng góc với mặt phẳng P Nếu đường thẳng a khơng vng góc với mặt phẳng P có mơt mặt phẳng chứa đường thẳng a vng góc với mặt phẳng P Câu 930 [1H3-1] Trong không gian, mệnh đề sau đúng? A Cơsin góc hai đường thẳng khơng gian số âm B Góc hai đường thẳng thuộc khoảng 0;90 C Góc hai mặt phẳng góc hai đường thẳng vng góc với hai mặt phẳng D Góc đường thẳng mặt phẳng góc đường thẳng đường thẳng nằm mặt phẳng Lời giải Chọn C TỐN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 3/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TỐN 11 Câu 931 [1H3-1] Trong khơng gian cho mp P điểm M không thuộc mp P Mệnh đề sau đúng? A Qua M kẻ vô số đường thẳng vng góc với mp P B Qua M có vơ số đường thẳng song song với mp P đường thẳng thuộc mặt phẳng Q qua M song song với P C Qua M có mặt phẳng vng góc với mp P D Có đường thẳng qua M tạo với mp P góc 60 Lời giải Chọn B Câu 932 [1H3-1] Trong mệnh đề sau, mệnh đề sai? A Hình lăng trụ đứng hình lăng trụ có cạnh bên vng góc với mặt đáy B Hình lăng trụ đứng có đáy hình chữ nhật gọi hình hộp chữ nhật C Hình hộp có cạnh gọi hình lập phương D Hình lăng trụ đứng có đáy đa giác gọi hình lăng trụ Lời giải Chọn C Hình lăng trụ đứng có đáy hình vng mặt bên hình vng gọi hình lập phương Câu 933 [1H3-1] Trong mệnh đề sau, mệnh đề đúng? A Hai mặt phẳng vng góc với mặt phẳng thứ ba vng góc với B Hai mặt phẳng vng góc với đường thẳng nằm mặt phẳng vng góc với mặt phẳng C Hai mặt phẳng vng góc với mặt phẳng song song với D Cả ba mệnh đề sai Lời giải Chọn D Hai mặt phẳng vng góc với mặt phẳng thứ ba song song với nên A sai Nếu hai mặt phẳng vng góc với đường thẳng vng góc với giao tuyến vng góc với mặt phẳng nên B sai Hai mặt phẳng vuông góc với mặt phẳng cắt nên C sai Câu 934 [1H3-1] Cho hình lập phương ABCD ABC D có cạnh a Tính AB AD A' D' B' C' A D B A a C C B a D a Lời giải Chọn C TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 4/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 Vì AB AD AB AD 1500 CÂU TRẮC NGHIỆM TOÁN 11 Câu 935 [1H3-1] Khẳng định sau sai? A Nếu d đường thẳng a // d a B Nếu đường thẳng d d vng góc với hai đường thẳng C Nếu đường thẳng d vng góc với hai đường thẳng cắt nằm d vng góc với đường thẳng nằm D Nếu đường thẳng d vng góc với hai đường thẳng nằm d Lời giải Chọn D Nếu đường thẳng d vng góc với hai đường thẳng nằm d sai Có thể đường thẳng d vng góc với hai đường thẳng nằm d nằm Để mệnh đề cần đường thẳng d vng góc với hai đường thẳng cắt nằm d Câu 936 [1H3-1] Trong không gian cho đường thẳng điểm O Qua O có đường thẳng vng góc với ? A B Vô số C D Lời giải Chọn B Có vơ số đường thẳng qua O vng góc với Các đường thẳng qua O nằm mặt phẳng O vng góc với Câu 937 [1H3-1] Tính chất sau khơng phải tính chất hình lăng trụ đứng? A Các mặt bên hình lăng trụ đứng vng góc với B Các mặt bên hình lăng trụ đứng hình chữ nhật C Các cạnh bên hình lăng trụ đứng song song với D Hai đáy hình lăng trụ đứng có cạnh tương ứng song song Lời giải Chọn A Các mặt bên hình lăng trụ đứng chưa vng góc với nhau, chúng vng góc với hình lăng trụ đứng có đáy hình chữ nhật Câu 938 [1H3-1] Đường thẳng d vng góc với mp P nào? A d vng góc với hai đường thẳng mp P TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 5/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TỐN 11 B d vng góc với hai đường thẳng mp P C d vng góc với hai đường thẳng cắt D d vng góc với hai đường thẳng cắt nằm mp P Lời giải Chọn D Câu 939 [1H3-1] Hình chóp S ABCD có đáy ABCD hình vng tâm O Hãy mệnh đề sai? A SA SC SO B SB SD 2SO C SA SC SB SD D SA SC SB SD Lời giải S A D O C B Chọn D Vì SA SC SB SD 2SO 2SO SO Câu 940 [1H3-2] Cho tứ diện S ABC có tam giác ABC vuông B ; SA ABC Mệnh đề sau SAI: A Bốn mặt tứ diện tam giác vuông B AB SBC C Trung điểm SC cách đỉnh tứ diện D BC SAB Lời giải Chọn B Ta có: Tam giác ABC vuông B 1 SA chiều cao tứ diện S ABC nên suy SA AB , SA AC , SA BC Mà BC AB suy BC SAB SB BC Từ 1 ; ; suy A, D TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 6/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 SBC 90 nên điểm A , B , C , D nội tiếp hình cầu tâm I trung điểm Các góc SAC SC , C Câu 941 [1H3-2] Cho lăng trụ tam giác ABC ABC có AA a , AB b , AC c Hãy phân tích vectơ BC qua vectơ a , b , c A BC a b c B BC a b c C BC a b c D BC a b c Lời giải Chọn D A' C' B' A C B Ta có BC AC AB AC AA AB c a b Câu 942 [1H3-2] Trong khẳng định sau, khẳng định sai? A Nếu ba vectơ a , b , c có hai vectơ phương ba vectơ đồng phẳng B Nếu ba vectơ a , b , c có vectơ ba vectơ đồng phẳng C Nếu giá ba vectơ a , b , c song song với mặt phẳng ba vectơ đồng phẳng D Nếu giá ba vectơ a , b , c cắt đơi ba vectơ đồng phẳng Lời giải Chọn D Mệnh đề A ln tồn mặt phẳng để ba vecto song song với mặt phẳng chọn Mệnh đề B Mệnh đề C theo định nghĩa Mệnh đề D sai ví dụ hệ trục Oxyz với ba vecto i , j , k Câu 943 [1H3-2] Cho hình hộp ABCD ABC D có tâm O Đặt AB a ; BC b M điểm xác định OM a b Chọn khẳng định đúng? A M tâm hình bình hành ABBA B M tâm hình bình hành BCC B C M trung điểm CC D M trung điểm BB Lời giải Chọn D TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 7/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 B' C' D' A' M O C B A D Ta có OM a b AB BC AB AD DB M trung điểm BB 2 2 Câu 944 [1H3-2] Cho hình chóp S ABCD có đáy hình chữ nhật cạnh bên Gọi O giao điểm hai đường chéo đáy Tìm mặt phẳng vng góc với SO ? A ABCD B SBC C SAC D SAB Lời giải Chọn A Ta có SAC cân S SO AC SBD cân S SO BD Vậy SO ABCD a , cạnh SA a SA vng góc với mặt phẳng ABCD Góc SC với mp ABCD Câu 945 [1H3-2] Cho hình chóp S ABCD có đáy hình vng ABCD cạnh A 90 B 60 C 30 Lời giải D 45 Chọn B Ta có AC AB a , AC hình chiếu SC ABCD Góc SC với mp ABCD SCA SA a 60 SCA AC a Câu 946 [1H3-2] Cho hình hộp ABCD ABC D Đặt AB a , AD b , AA c Gọi M trung điểm BC Hãy chọn khẳng định khẳng định sau: Ta có tan SCA TỐN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 8/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 A AM a b c 2 C AM a b c 2 1500 CÂU TRẮC NGHIỆM TOÁN 11 B AM a b c D AM a b c Lời giải Chọn A Ta có AM AB AC AB AB AD AA a b c 2 2 Câu 947 [1H3-2] Cho tam giác ABC Giá trị sin BC , AC A B C Lời giải D Chọn A Ta có BC , AC CB, CA CB, CA BCA sin 60 Suy sin BC , AC sin BCA Câu 948 [1H3-2] Cho hình chóp S ABC có cạnh SA , SB , SC đơi vng góc SA SB SC Gọi I trung điểm AB Khi góc hai đường thẳng SI BC A 120 B 60 C 90 D 30 Lời giải Chọn B C M B S I A Gọi M trung điểm AC , MI //BC nên SI , BC SIM AC BC , MI mà tam giác vuông SAC , SAB , SBC nên 2 AB AC BC tam giác SMI Ta có SM SI TỐN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 9/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 60 Vậy SIM Câu 949 [1H3-2] Cho tứ diện OABC có cạnh OA , OB , OC đơi vng góc Gọi H chân đường vng góc hạ từ O tới ABC thì: trọng tâm tam giác ABC tâm đường tròn ngoại tiếp tam giác ABC tâm đường tròn nội tiếp tam giác ABC trực tâm tam giác ABC Lời giải Chọn D C A B C D H H H H M N H B O A Ta có OH BC , OA BC suy BC OAH AH BC Tương tự ta có BH AC Vậy H trực tâm tam giác ABC Câu 950 [1H3-2] Cho hình chóp S ABC có đáy ABC tam giác cạnh 2a , tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Tính khoảng cách từ điểm S đến mặt phẳng ABC A a B a C 2a D a Lời giải Chọn B S A O B C Vì tam giác SAB nên SO AB với O trung điểm AB Do khảng cách từ điểm S đến mặt phẳng ABC SO 2a a Câu 951 [1H3-2] Cho hình lập phương ABCD ABC D có cạnh a Góc hai đường thẳng CD AC A 45 B 30 C 60 D 90 Lời giải TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 10/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 Ta có: BC SA BC SAB BC SB BC AB SBC ABC BC AB BC ; AB ABC SBC ; ABC SBA SB BC ; SB SBC Câu 981 [1H3-2] Cho hình chóp tứ giác S ABCD có cạnh đáy cạnh bên a Khoảng cách từ điểm S đến mặt phẳng ABCD bao nhiêu? A a B a C a D a Lời giải Chọn A Gọi O giao điểm AC BD Do S ABCD khối chóp nên SO ABCD SO khoảng cách từ điểm S đến mặt phẳng ABCD Ta có AO AC a 2 a2 a Trong tam giác vng SOA , ta có SO SA AO a 2 2 Câu 982 [1H3-2] Cho hình chóp S ABCD có đáy ABCD hình vng SA ABCD Gọi góc SC mp ABCD Chọn khẳng định khẳng định sau? TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 23/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 A ASC B SCA 1500 CÂU TRẮC NGHIỆM TOÁN 11 C SAC Lời giải D SBA Chọn B Vì SA ABCD nên AC hình chiếu vng góc SC mặt phẳng ( ABCD) (vì SAC vng A ) Ta có SC , AC SCA Câu 983 [1H3-2] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O , SA ABCD Các khẳng định sau, khẳng định sai? S A D O B A SA BD C B SC BD C SO BD Lời giải D AD SC Chọn D SA ( ABCD ) SA BD SA BD BD SAC BD SC AC BD BD SAC BD SO SO SAC Giả sử AD SC , AD SAC AD AC AD BD (vơ lí) Câu 984 [1H3-2] Cho hình lập phương ABCD A1 B1C1 D1 Gọi O tâm hình lập phương Chọn đẳng thức đúng? C1 B1 D1 A1 O C D A AO AB AD AA1 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập B A B AO AB AD AA1 Trang 24/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 C AO AB AD AA1 1500 CÂU TRẮC NGHIỆM TOÁN 11 D AO AB AD AA1 Lời giải Chọn B Ta có: d : AO AC AB AD AA1 (qui tắc hình hộp) 2 Câu 985 [1H3-2] Cho hình lập phương ABCD ABC D có cạnh a Khoảng cách hai đường thẳng BD AC A 3a B C a 2a D 3a Lời giải Chọn C B C O A D C' B' O' A' D' Gọi O O tâm hình vng ABCD ABC D OO đoạn vng góc chung BD AC ( Vì OO ABCD , OO ABC D ) Nên d BD, AC OO a Gợi ý: BD / / ABC D AC d BD; AC d BD; ABC D d B; ABC D BB a Câu 986 [1H3-2] Cho hình lập phương ABCD ABC D Mặt phẳng vng góc với mặt phẳng ABCD ? A ABC D B ABC D C CDAD D AAC C Lời giải Chọn D Ta có: AA cạnh bên hình hộp AA ABCD TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 25/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 Mà AA AAC C Nên AAC C ABCD Câu 987 [1H3-3] Cho hình lăng trụ ABC ABC có tất cạnh a Gọi M trung điểm AB góc tạo MC mặt phẳng ABC Khi tan A B C D Lời giải Chọn D A' C' B' A C M B Ta có CC ABC nên góc MC ABC góc MC MC MC Do tam giác C CM vuông C nên góc cần tìm C CC a MC Ta có tan tan C CM a 3 Câu 988 [1H3-3] Cho hình chóp S ABCD có đáy ACBD hình vng cạnh a , hai tam giác SAB SAD vuông cân A Gọi G trọng tâm tam giác SAB Gọi mặt phẳng qua G song song với SB AD Thiết diện tạo mặt phẳng hình chóp S ABCD có diện tích A 2a B 4a 2 C 4a 2 D 4a Lời giải Chọn C TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 26/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 S K J G I D A B C H Ta có SA AB AD a SA AB SA AD nên SA ABCD Mặt phẳng qua G , song song SB AD cắt hình chóp theo thiết diện hình thang IJKH Mặt khác AI IH nên IJKH hình thang vng S IJKH 1 11 4a 2 2 JK IH IJ AD AD SB a.a 23 3 3 Câu 989 [1H3-3] Cho hình chóp tứ giác S ABCD có đáy ABCD hình vng E điểm đối xứng với D qua trung điểm SA Gọi M , N trung điểm AE BC Góc MN BD A 45 B 75 C 90 D 60 Lời giải Chọn C Gọi P trung điểm SA Ta có MNCP hình bình hành nên MN song song với SAC MN / / PC mà BD SAC nên BD PC BD MN Câu 990 [1H3-3] Cho lăng trụ đứng ABC ABC có tất cạnh 2a Khoảng cách hai đường thẳng BC AA A 2a B a C a D 2a Lời giải Chọn B TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 27/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 Trong tam giác ABC gọi M trung điểm BC Vì ABC ABC lăng trụ đứng đáy tam giác nên ta có AM BC , AM AA Suy đường thẳng AM đường vng góc chung BC AA Vậy d BC, AA AM 2a a Câu 991 [1H3-3] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh , hai mặt phẳng SAB SAC vng góc với mặt phẳng đáy, SA Gọi M trung điểm cạnh SD Khoảng cách từ điểm M đến mặt phẳng SBC A B C D Lời giải Chọn A Hai mặt phẳng SAB SAC vng góc với mặt phẳng đáy ABCD Do đó: SA ABCD Kẻ AH SB Ta có: 1 (với H SB ) BC AD BC SAD BC AH BC SA 2 Từ 1 AH SBC d A, SBC AH TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 28/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 MK AH Kẻ MK //AH (với K SB ) MK SBC Xét SAD vuông cân A AH Vậy d M , SBC 2 d A, SBC AH 2 Câu 992 [1H3-3] Cho hình chóp tứ giác S ABCD có tất cạnh cm Tính khoảng cách từ điểm B đến mặt phẳng SCD A cm B 15 cm C cm D cm Lời giải Chọn C S H A D I O B C Gọi O giao điểm AC BD Ta có d B, SCD 2d O, SCD Gọi I , H hình chiếu vng góc O lên CD, SI Ta có d O, SCD OH Ta có OI AD , SO SB OB 2 3 Xét tam giác vuông SOI (vng O ) có OH đường cao nên OH SO.OI SO2 OI Suy d B, SCD 2d O, SCD cm Câu 993 [1H3-3] Cho hình chóp tam giác S ABC có mặt phẳng SAB SAC vng góc với mặt đáy Biết góc mặt phẳng SBC mặt đáy 60 , cạnh AB cm ; BC cm ; CA cm Tính độ dài cạnh SA hình chóp A cm B cm C cm D cm Lời giải Chọn D TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 29/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 S C A H B Do mặt phẳng SAB SAC vng góc với mặt đáy nên SA ABC Gọi H hình chiếu A lên BC SHA 60 Suy góc mặt phẳng SBC mặt đáy góc SHA Ta có nửa chu vi tam giác ABC p 468 9 Suy diện tích tam giác ABC : S ABC 8 15 Lại có S ABC 2.S ABC AH BC AH 15 BC Suy SA AH tan 60 cm Câu 994 [1H3-3] Cho hình chóp SABC có đáy ABC tam giác cạnh 2a ; cạnh bên SA vng góc với mặt đáy, SA a ; gọi M trung điểm AC Tính khoảng cách từ M đến mặt phẳng SBC S M A C B A d M , (SBC ) a B d M , (SBC ) a C d M , (SBC ) a D d M , (SBC ) a Lời giải Chọn B TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 30/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 S H A C M I B Gọi I trung điểm BC AI BC BC SAI Trong mặt phẳng SAI , kẻ AH vng góc với SI H AH SBC Có AI 2a a nên SAI vuông cân đỉnh A H trung điểm SI AH a a d A, SBC AH 2 Lại có d M , SBC a d M , SBC Câu 995 [1H3-3] Cho hình chóp S ABC có đáy ABC vng cân A , AB a , tam giác SBC nằm mặt phẳng vng góc với mặt đáy Tính khoảng cách hai đường thẳng AC SB ta kết A a 21 B 2a 21 C 2a 21 D a 21 14 Lời giải Chọn B Gọi H trung điểm BC SH BC ( SBC đều) mà SBC ABC SH ABC Kẻ Bx // AC , HM Bx M Bx AC // SBM d AC , SB d AC , SBM d C , SBM 2d H , SBM TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 31/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 SH ABC Ta có SH BM mà BM MH BM SMH SBM SMH BM ABC Mặt khác SBM SMH SM , kẻ HK SM , K SM HK SBM d H , SBM HK BC AB 2a , SH BC 3 2a a 2 HCA 45 MBH vuông cân M BM // AC MBH BC a 2 2 BM BH SH HM Ta có HK SH HM a 21 2a 21 d AC , SB 7 Câu 996 [1H3-3] Cho tứ diện OABC có OA , OB , OC đơi vng góc với OA OB OC Gọi M trung điểm BC (tham khảo hình vẽ) Góc hai đường thẳng OM AB A 90 B 30 C 60 Lời giải Chọn C + Ta có: OM AB OM OB OA OM OB OM OA OM OB.cos OM , OB OM OA.cos OM , OA + Ta lại có: OM D 45 1 BC OB OC 2 45 OM , OB BOM OM , OA 90 (vì OA OBC OA OM 2 1.cos 45 1.cos 90 Suy ra: OM AB 2 OM AB cos OM , AB 2 OM AB 2 Vậy OM , AB 60 Câu 997 [1H3-3] Cho hình chóp tứ giác S ABCD có tất cạnh a Gọi M trung điểm SD (tham khảo hình vẽ) TỐN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 32/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TỐN 11 Tính tang góc đường thẳng BM mặt phẳng ABCD : A B C D Lời giải Chọn B + Kẻ SH ABCD Khi H giao điểm AC BD + Gọi K trung điểm HD Khi MK //SH nên MK ABCD S M A D K H B C + Từ suy BM , ABCD BM , BK MBK + Ta có: a a2 - Trong tam giác SHD vuông H : SH SD HD a SH 2 a a MK 3a - Trong tam giác MBK vuông K , ta có: - Lại có: BK tan MBK MK a BK 3a Câu 998 [1H3-3] Cho tứ diện ABCD Tìm góc hai đường thẳng AB CD A 30 B 45 C 60 D 90 Lời giải Chọn D TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 33/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 D a a A C a B + Gọi cạnh tứ diện a + Ta có: AB.CD AB CA AD AB.CA AB AD a.a.cos120 a.a.cos 60 1 a a AB, CD 90 2 Câu 999 [1H3-4] Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a Gọi M , N trung điểm cạnh AB , AD ; H giao điểm CN DM Biết SH 3a vng góc với mặt đáy ABCD Khoảng cách hai đường thẳng MD SC A 12a 15 61 B a 61 61 12a 61 61 Lời giải C D 6a 61 61 Chọn C A D N H 2a M B C E Cách 1: Dựng đường thẳng d qua C song song với DM d AB E Dựng HK SC , K SC Ta có DMA CDN (c.c.c ) Suy NCD ADM CND 90 90 CHD 90 MD CN H Lại có NCD ADM CND CE CH Suy CE CSH CE HK (1) CE SH HK CE (1) Suy ta HK CSE HK CS d DM , SC d DM , CSE d H , CSE HK TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 34/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TỐN 11 Ta có NC DC DN 4a a a S K K D A H M C B E DC 4a 5a Xét tam giác vuông NCD ta có HC NC a 5 Suy ta HK HS HC 12 61 a 61 HS HC Cách 2: Dễ thấy CN DM CH DM Tam giác ADM vng A có: DM AD AM a CH DM Ta có : DM SHC SH DM 4a S DCM CH DM 2a CH Trong SHC hạ HK SC d DM , SC HK Tam giác SHC vuông H có: 1 12a 61 HK 2 HK SH HC 61 Câu 1000 [1H3-4] Cho hình chóp S ABC có đáy tam giác vuông cân B , AB a Gọi M trung điểm AC Biết hình chiếu vng góc S lên mp ABC điểm N thỏa mãn BM 3MN góc hai mặt phẳng SAB SBC 60 Tính khoảng cách hai đường thẳng AB SM theo a 17a 17a A B 51 34 C 17 a 17 D 17a 68 Lời giải Chọn C TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 35/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 1500 CÂU TRẮC NGHIỆM TOÁN 11 Kẻ MI SB I , mà AC SB IAC SB SAB , SBC AI , CI Trường hợp: AI C 60 IAC IC a BC (vơ lí) a a t an30 Trường hợp: AI C 120 ACM 30 IM 2a NJ NB NJ MI MI MB 1 2a SNB vuông N SN 2 SN NI NB Kẻ ME BC E Kẻ NJ SB J IBM JNB AB SME d AB, SM d AB, SME d B, SME 3d N , SME Kẻ NQ ME Q SEQ SNQ theo giao tuyến SQ Kẻ NH SQ H NH SEQ d N , SME NH NQ NM a NQ BE BE BM 2a 36 153 SNQ vuông N NH NH 4a a 4a 17 Ta có NQM BEM TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 36/37 – 1H3 TÀI LIỆU ÔN THI THPT QUỐC GIA NĂM 2018 Vậy d AB, SM 1500 CÂU TRẮC NGHIỆM TOÁN 11 2a 17 17 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm biên tập Trang 37/37 – 1H3