1. Trang chủ
  2. » Khoa Học Tự Nhiên

Photon

22 412 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Nội dung

Photon Bách khoa toàn thư mở Wikipedia Bài này viết về hạt cơ bản của ánh sáng. Đối với các định nghĩa khác, xem Photon (định hướng). Photon Chùm tia sáng đồng pha từ thiết bị laser Cấu trúc Hạt sơ cấp Loại hạt Boson Nhóm Gauge boson Tương tác cơ bản Điện từ Lý thuyết Albert Einstein (1905– 17) Ký hiệu γ, h ν, hoặc ħ ω Khối lượng 0 [1] Thời gian sống Bền [2] Điện tích 0 Spin 1 [1] x • t • s Trong vật lý, photon là một hạt cơ bản, đồng thời là hạt lượng tử của trường điện từ và ánh sáng cũng như mọi dạng bức xạ điện từ khác. Nó cũng là hạt tải lực của lực điện từ. Các hiệu ứng của lực điện từ có thể dễ dàng quan sát ở cả thang vi mô và vĩ mô do photon không cókhối lượng nghỉ; và điều này cũng cho phép các tương tác cơ bản xảy ra được ở những khoảng cách rất lớn. Cũng giống như mọi hạt cơ bản khác, photon được miêu tả bởi cơ học lượng tử và biểu hiện lưỡng tính sóng hạt — chúng thể hiện các tính chất giống như của cả sóngvà hạt. Ví dụ, một hạt photon có thể bị khúc xạ bởi một thấu kính hoặc thể hiện sự giao thoa giữa các sóng, nhưng nó cũng biểu hiện như một hạt khi chúng ta thực hiện phép đo định lượng về động lượng của nó. Khái niệm hiện đại về photon đã được phát triển dần dần bởi Albert Einstein để giải thích các quan sát thực nghiệm mà không thể được giải thích thỏa đáng bởi mô hình sóng cổ điển của ánh sáng. Đặc biệt, mô hình photon đưa ra sự phụ thuộc của năng lượng ánh sáng vào tần số, và giải thích khả năng của vật chất và bức xạ đạt đến trạng thái cân bằng nhiệt động. Mô hình cũng đưa ra sự giải thích cho một số quan sát khác thường, bao gồm tính chất của bức xạ vật đen, mà một số nhà vật lý, điển hình nhất là Max Planck, đã từng giải thích bằng cách sử dụng các mô hình bán cổ điển, theo đó ánh sáng vẫn được miêu tả bằng các phương trình Maxwell, nhưng ánh sáng phát ra hoặc hấp thụ từ vật thể bị lượng tử hóa. Mặc dù những mô hình bán cổ điển này đóng góp vào sự phát triển của cơ học lượng tử, những thí nghiệm sau này đã công nhận giả thiết của Einstein rằng chính ánh sáng bị lượng tử hóa; và lượng tử của ánh sáng là các hạt photon. Trong Mô hình chuẩn hiện đại của vật lý hạt, photon được miêu tả như là một hệ quả cần thiết của các định luật vật lý với tính đối xứng tại mỗi điểm trong không thời gian. Các tính chất nội tại của photon như điện tích, khối lượng và spin được xác định bởi tính chất của đối xứng gauge. Lý thuyết neutrino về ánh sáng với cố gắng miêu tả photon có cấu trúc thành phần, vẫn chưa có được một thành công nào đáng kể. Khái niệm photon đã dẫn đến những phát triển vượt bậc trong vật lý lý thuyết cũng như thực nghiệm, như laser, ngưng tụ Bose–Einstein, lý thuyết trường lượng tử, và cách giải thích theo xác suất của cơ học lượng tử. Nó đã được áp dụng cho các lĩnh vực như quang hóa học(photochemistry), kính hiển vi có độ phân giải cao và các phép đo khoảng cách giữa các phân tử. Hiện nay, photon được nghiên cứu như một trong những phần tử của các máy tính lượng tử và cho những ứng dụng phức tạp trong thông tin quang như mật mã lượng tử (quantum cryptograpy). Mục lục [ẩn] 1 Thuật ngữ 2 Tính chất vật lý 2.1 Thí nghiệm kiểm tra khối lượng của photon 3 Lịch sử phát triển 4 Những phản đối ban đầu 5 Lưỡng tính sóng hạt và nguyên lý bất định 6 Mô hình Bose–Einstein về chất khí photon 7 Công nghệ 8 Ghi chú 9 Tham khảo 10 Bổ sung tài liệu tham khảo [sửa]Thuật ngữ Năm 1900 Max Planck đang nghiên cứu về bức xạ vật đen và đề xuất ra là năng lượng của sóng điện từ có thể được giải phóng ra theo những "gói" năng lượng; mà ông gọi chúng là nhữnglượng tử. Sau đó, năm 1905 Albert Einstein đã tiến xa hơn bằng đề xuất rằng sóng điện từ chỉ có thể tồn tại trong những gói rời rạc này. [3] Ông gọi những gói sóng này là lượng tử ánh sáng(tiếng Đức: das Lichtquant). Tên gọi photon bắt nguồn từ tiếng Hy Lạp cho ánh sáng, φως (chuyển tự thành phôs), và đã được sử dụng [Ct 1] bởi nhà hóa lý Gilbert Lewis năm 1926, người đã đưa ra một lý thuyết suy đoán các photon có đặc điểm "không thể tạo ra hoặc bị phá hủy". [4] Mặc dù lý thuyết của Lewis chưa bao giờ được công nhận do nó mâu thuẫn với nhiều thí nghiệm, thuật ngữ photon do ông đưa ra đã nhanh chóng được các nhà vật lý sử dụng. Isaac Asimov đã công nhận Arthur Compton là người đưa ra định nghĩa lượng tử năng lượng gắn với photon vào năm 1927. [5][6] Trong vật lý học, photon thường được kí hiệu bởi chữ γ (chữ cái Hy Lạp gamma). Kí hiệu này có lẽ bắt nguồn từ tia gamma, do tia này được khám phá bởi Paul Villard năm 1900, [7][8] và đượcErnest Rutherford đặt tên là tia gamma vào năm 1903, và sau đó Rutherford và Edward Andrade đã chỉ ra tia này là một dạng của bức xạ điện từ vào năm 1914. [9] Trong hóa học và kĩ thuật quang học, photon thường được kí hiệu là hν, hay đây là năng lượng của một photon, với h là hằng số Planck và chữ cái Hy Lạp ν (nu) là tần số của photon. Ít thông dụng hơn, photon có thể được kí hiệu là hf, trong đó tần số được kí hiệu bằng f. [sửa]Tính chất vật lý Xem thêm: Thuyết tương đối hẹp Photon là hạt phi khối lượng, [Ct 2] không có điện tích, [10] và không bị phân rã tự phát trong chân không. Một photon có hai trạng thái phân cực và được miêu tả chính xác bởi ba tham số liên tục: là các thành phần của vectơ sóng của nó, xác định lên bước sóng λ và hướng lan truyền của photon. Photon là một boson gauge của trường điện từ, [11] và do vậy mọi số lượng tử khác của photon (như số lepton, số baryon, và số lượng tử hương) đều bằng 0. [12] Biểu đồ Feynman mô tả electron vàpositron trao đổi photon (còn gọi là tán xạ Bhabha). Các photon được phát ra từ rất nhiều quá trình trong tự nhiên. Ví dụ, khi một hạt tích điện bị gia tốc, nó sẽ phát ra bức xạ synchrotron. Trong quá trình một phân tử, nguyên tử hoặc hạt nhân trở về trạng thái có mức năng lượng thấp hơn, các photon với năng lượng khác nhau sẽ bị phát ra, từ bức xạ hồng ngoại cho đến tia gamma. Photon cũng được phát ra khi một hạt và phản hạt tương ứng hủy lẫn nhau (ví dụ như sự hủy cặp hạt electron và positron). Trong chân không, photon chuyển động với vận tốc ánh sáng c và năng lượng cùng động lượng của nó được liên hệ trong công thức E = pc, với p là độ lớn của vector động lượng p. Công thức này suy ra từ công thức tương đối tính, với m = 0: [13] Năng lượng và động lượng của photon chỉ phụ thuộc vào tần số (ν) của nó hay bước sóng (λ): Với k là vectơ sóng (trong đó số sóng (wave number) k = |k| = 2π/λ), ω = 2πν là tần số góc, và ħ = h/2π là hằng số Planck thu gọn. [14] Do p chỉ theo hướng của sự lan truyền photon, độ lớn của động lượng sẽ là Photon cũng mang động lượng góc spin mà không phụ thuộc vào tần số của nó. [15] Độ lớn của spin là và thành phần đo dọc theo hướng chuyển động của nó, hay hình chiếu của động lượng (helicity), phải là ±ħ. Có hai hình chiếu của động lượng, gọi là bên phải (right-handed) và bên trái (left- handed), tương ứng với hai trạng thái phân cực tròn của photon. [16] Để minh họa ý nghĩa của những công thức này, sự hủy của một hạt và phản hạt tương ứng trong chân không phải cho kết quả là tạo ra ít nhất hai photon vì những lý do sau. Đối với khối tâmcủa hệ, tổng động lượng toàn phần phải bằng không, trong khi đối với một photon thì nó luôn có động lượng (do những tính chất đã được miêu tả ở trước, động lượng chỉ phụ thuộc vào tần số hoặc bước sóng—mà không thể bằng không). Từ đó, theo định luật bảo toàn động lượng (hoặc tương đương với, bất biến tịnh tiến) đòi hỏi rằng ít nhất hai photon phải được tạo ra, cho tổng động lượng toàn phần bằng không. (Tuy vậy nếu hệ tương tác với một hạt khác hoặc một trường khác trong quá trình hủy cặp hạt thì có khả năng sinh ra một photon, ví dụ như khi một hạt positron hủy với một electron liên kết trong hệ nguyên tử, thì có thể sinh ra chỉ một photon do trường Coulomb của hạt nhân nguyên tử đã phá vỡ đối xứng tịnh tiến.) Năng lượng của hai photon, hay một cách tương đương, tần số của chúng, có thể được xác định từ định luật bảo toàn bốn-động lượng. Nhìn theo một hướng khác, ta có thể xem photon là phản hạt với chính nó. Và quá trình ngược lại, sự sinh cặp, thể hiện nổi bật trong cơ chế các hạt photon năng lượng cao như tia gamma bị mất năng lượng khi truyền qua vật chất. [17] Quá trình ngược lại của "sự hủy một hạt photon" được diễn ra trong điện trường của một hạt nhân nguyên tử. Công thức cổ điển cho năng lượng và động lượng của bức xạ điện từ có thể được viết lại theo khái niệm của sự kiện photon. Ví dụ, áp suất bức xạ điện từ lên một vật được dẫn ra từ sự truyền động lượng của photon trên một đơn vị thời gian và một đơn vị diện tích của vật thể đó, do áp suất là lực trên một đơn vị diện tích và lực là sự thay đổi của động lượng trên đơn vị thời gian. [18] [sửa]Thí nghiệm kiểm tra khối lượng của photon Photon hiện tại được tin là không có khối lượng, nhưng nó vẫn còn là một câu hỏi trong lĩnh vực thực nghiệm. Nếu photon không phải là không có khối lượng, thì nó không thể chuyển động với vận tốc chính xác bằng vận tốc của ánh sáng trong chân không, c. Vận tốc của nó sẽ phải nhỏ hơn và phụ thuộc vào tần số của nó. Thuyết tương đối sẽ không bị ảnh hưởng bởi vấn đề này; vì cái gọi là vận tốc ánh sáng, c, do đó sẽ không phải là vận tốc thực mà ánh sáng di chuyển, mà là một hằng số của tự nhiên giới hạn vận tốc lớn nhất của bất kì một vật thể nào về mặt lý thuyết có thể đạt được trong không thời gian. [19] Và như thế, nó vẫn là vận tốc của những gợn không thời gian (các sóng hấp dẫn và các hạt graviton), nhưng nó không phải là vận tốc của photon. Nếu hạt photon có khối lượng thì nó cũng sẽ ảnh hưởng đến tính chất khác. Như định luật Coulomb sẽ phải thay đổi và trường điện từ phải có thêm một bậc vật lý tự do. Những hiệu ứng này chi phối độ chính xác của các thí nghiệm nhằm khám phá khối lượng của photon cao hơn so với sự phụ thuộc vào tần số của vận tốc ánh sáng. Nếu định luật Coulomb không đúng hoàn toàn, thì nó sẽ khiến cho xuất hiện một điện trường bên trong một vật dẫn rỗng khi vật này được đặt trong một điện trường ngoài. Từ đây có thể kiểm tra định luật Coulomb với độ chính xác rất cao. [20] Thí nghiệm kiểm tra điều này không phát hiện ra được điện trường bên trong vật dẫn rỗng và đặt giới hạn cho khối lượng trên của photon trong thực nghiệm là m ≲ 10 −14 eV/c 2 . [21] Giới hạn trên cho khối lượng của photon với độ chính xác cao hơn thu được trong thí nghiệm nhằm xác định hiệu ứng gây lên bởi vectơ thế từ trường thiên hà (galactic vector magnetic potential). Mặc dù vectơ thế từ trường thiên hà là rất lớn do từ trường của thiên hà tồn tại trên những khoảng cách lớn, thì từ trường này chỉ có thể quan sát được nếu photon là hạt phi khối lượng. Trong trường hợp photon có khối lượng, số hạng khối lượng có thể ảnh hưởng đến plasma thiên hà. Trên thực tế không một hiệu ứng nào đã được quan sát và các nhà vật lý rút ra được giới hạn khối lượng trên cho photon là m < 3×10 −27 eV/c 2 . [22] Vectơ thế thiên hà cũng có thể được khám phá một cách trực tiếp bằng cách đo mômen xoắn tác động lên một vành từ hóa. [23] Những phương pháp này đã thu được giới hạn trên là 10 −18 eV/c 2 , được cho trong Nhóm Dữ liệu Hạt (Particle Data Group). [24] Những giới hạn rất nhỏ này được suy ra từ sự không quan sát thấy các hiệu ứng do vectơ thế từ trường thiên hà đã được chỉ ra là những mô hình phụ thuộc. [25] Nếu khối lượng của photon được tạo ra thông qua cơ chế Higgs thì giới hạn trên cho khối lượng của photon là m≲10 −14 eV/c 2 do định luật Coulomb phù hợp với thí nghiệm kiểm tra nó. [sửa]Lịch sử phát triển Bài chi tiết: Ánh sáng Thí nghiệm hai khe của Thomas Young năm 1805 chỉ ra rằng ánh sáng thể hiện giống như sóng, dẫn đến sự thất bại của thuyết hạt ánh sáng. Cho đến tận thế kỷ thứ mười tám, trong hầu hết các lý thuyết, ánh sáng được hình dung như là dòng các hạt. Mặt khác các mô hình hạt ánh sáng không giải thích một cách thuyết phục những hiện tượng như khúc xạ, nhiễu xạ hay lưỡng chiết của ánh sáng, vì thế đã xuất hiện các lý thuyết sóng ánh sáng được đề xuất bởi René Descartes (1637), [26] Robert Hooke (1665), [27] và Christian Huygens (1678); [28] tuy vậy, các mô hình hạt vẫn nổi trội hơn, đa phần là do thanh thế của Isaac Newton (một trong những người ủng hộ mạnh mẽ cho thuyết hạt). [29] Đầu thế kỷ thứ mười chín, Thomas Young và August Fresnel minh chứng cho thấy ánh sáng thể hiện tính chất giao thoa và nhiễu xạ và cho đến năm 1850 mô hình sóng đã được [...]... kĩ thuật, các photon không thể có trạng thái riêng dương do vậy, nguyên lý bất định Heisenberg , và không áp dụng cho các photon Một vài hàm sóng thay thế đã được đề xuất cho photon, [54][55][56] [57] nhưng chúng đã không được sử dụng rộng rãi Thay vào đó, các nhà vật lý đưa ra lý thuyết lượng tử hóa lần hai cho photon như được miêu tả bên dưới, điện động lực học lượng tử, trong đó các photon là những... do photon có thể bị tán xạ theo mọi hướng bên trong góc mở, nên độ bất định của động lượng photon bằng Từ đó tích của chúng là , và đây chính là nguyên lý bất định của Heisenberg Từ đó, toàn bộ thế giới bị lượng tử hóa; cả vật chất và các trường phải tuân theo những tập hợp các định luật cơ học lượng tử [50] Sự tương tự của nguyên lý bất định cho photon khi không cho phép đo đồng thời số các hạt photon. .. rằng photon không phải là một xung ngắn của bức xạ điện từ; nó không dải rộng ra khi lan truyền, và cũng không bị chia ra khi đi đến một gương bán mạ.[48] Hơn nữa, photon dường như là một hạt điểm do nó bị hấp thụ hoặc phát xạ một cách toàn bộ bởi một hệ nhỏ tùy ý, những hệ nhỏ hơn bước sóng của nó, như hạt nhân nguyên tử (đường kính ≈10−15 m ) hoặc thậm chí bởi hạt điểm như electron Mặt khác, photon. .. bỏ trong các thập niên 1970 và 1980 bởi các thí nghiệm tương quan -photon (photon- correlation).[Ct 4] Từ đây, giả thuyết của Einstein rằng sự lượng tử hóa là một thuộc tính của bản thân ánh sáng đã được chứng minh [sửa]Lưỡng tính sóng hạt và nguyên lý bất định Xem thêm: Lưỡng tính sóng hạt, Nguyên lý bất định, và Trạng thái đồng pha ép Photon, giống như các đối tượng lượng tử, biểu hiện cả hai tính chất... chất lưỡng tính sóng-hạt của chúng khó có thể hình dung được Photon biểu thị rõ ràng tính chất sóng trong các hiệu ứng như nhiễu xạ và giao thoa đối với các bước sóng đủ lớn Ví dụ, một photon đi qua các khe trong thí nghiệm hai khe và biểu hiện trên màn chắn hiệu ứng giao thoa chỉ khi chúng ta không thực hiện một đo đạc nào liên quan đến photon khi nó đi qua hai khe Sự giải thích hiện tượng này theo... điểm hiện đại về các photon là, chúng là các hạt ảo với spin nguyên, các boson (ngược với cácfermion với spin bán nguyên) Theo định lý spin-thống kê, mọi boson đều tuân theo thống kê Bose–Einstein (trong khi mọi fermion tuân theo thống kế Fermi-Dirac).[62] [sửa]Công nghệ Nhờ các tương tác của photon với vật chất, đặc biệt là các tương tác phi tuyến tính, người ta có thể sử dụng photon thay cho electron... có chứng cứ nào cho thấy chính Planck đã sử dụng thuật ngữ "photon" đến năm 1926 (xem trong đây) ^ Khối lượng của photon được tin là chính xác bằng không, dựa trên các thí nghiệm và lý thuyết được miêu tả trong bài này Một số nguồn có đưa ra khái niệm khối lượng tương đối tính, theo đó năng lượng được tính theo đơn vị khối lượng Đối với một photon có bước sóng λ hay năng lượng E, khối lượng sẽ bằng... Cauchy–Schwarz cổ điển Năm 1977, Kimble và cộng sự thực hiện sự tương tự với hiệu ứng phản-cụm (antibunching effect) của tương tác photon với một gương bán mạ; cách tiếp cận này đã loại bỏ các sai số của nguồn và làm đơn giản hơn trong thí nghiệm phản tương quan -photon (photon- anticorrelation experiment) của Grangier và các cộng sự (1986) Công trình này đã được xem xét lại và thực hiện đơn giản hơn... trong sóng điện từ và pha sóng của sóng này Xem thêm trạng thái đồng pha và trạng thái đồng pha ép (squeezed coherent state) Cả photon và các hạt khác như electron tạo ra các hình ảnh giao thoa tương tự nhau khi chúng đi qua các khe trong một thí nghiệm hai khe Đối với các photon, điều này tương ứng với sự giao thoa của sóng Maxwell trong khi, đối với hạt vật chất, điều này tương ứng với sự giao thoa... phương trình Schrödinger cho các hạt photon, thì hầu hết các nhà vật lý lại cho rằng không phải như vậy.[51][52] Với lý do, chúng khác nhau rõ ràng về mặt toán học, phương trình Schrödinger có nghiệm là các trường phức, trong khi nghiệm của bốn phương trình cho các trường số thực Tổng quát hơn, khái niệm chuẩn về hàm sóng xác suất Schrödinger không thể áp dụng được cho photon [53] Do là hạt phi khối lượng, . thuật quang học, photon thường được kí hiệu là hν, hay đây là năng lượng của một photon, với h là hằng số Planck và chữ cái Hy Lạp ν (nu) là tần số của photon. Ít thông dụng hơn, photon có thể được. Photon Bách khoa toàn thư mở Wikipedia Bài này viết về hạt cơ bản của ánh sáng. Đối với các định nghĩa khác, xem Photon (định hướng). Photon Chùm tia sáng đồng pha. xác định lên bước sóng λ và hướng lan truyền của photon. Photon là một boson gauge của trường điện từ, [11] và do vậy mọi số lượng tử khác của photon (như số lepton, số baryon, và số lượng tử

Ngày đăng: 25/05/2014, 10:27

Xem thêm

TỪ KHÓA LIÊN QUAN

w