THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 74 |
Dung lượng | 2,04 MB |
Nội dung
Ngày đăng: 04/06/2023, 11:53
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||||||
---|---|---|---|---|---|---|---|---|
[5]. “80% bệnh tim mạch giai đoạn đầu có thể phòng ngừa được nếu làm theo khuyến cáo từ chuyên gia”, https://moh.gov.vn/ | Sách, tạp chí |
|
||||||
[30]. Avan Suinesiaputra, Charlène A. Mauger, Bharath Ambale-Venkatesh (2021). “Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis”, Front Cardiovasc Med. 2021; 8: 807728 | Sách, tạp chí |
|
||||||
[32]. Shruti Jadon (2020), “A survey of loss functions for semantic segmentation”, IEEE, arXiv:2006.14822v4 [eess.IV] | Sách, tạp chí |
|
||||||
[3]. Tran, P. V. (2016). A fully convolutional neural network for cardiac segmentation in Short- Axis MRI.Arxiv Preprint abs/1604.00494. Available at: http://arxiv.org/abs/1604.00494 | Link | |||||||
[9]. Olaf Ronneberger, Philipp Fischer, Thomas Brox, 2015, U-Net: Convolutional Networks for Biomedical Image Segmentation, https://arxiv.org/abs/1505.04597 | Link | |||||||
[22]. Chung Pham Van, 2021, A survey of loss functions for semantic segmentation, https://viblo.asia/ | Link | |||||||
[1]. Avendi, M. R., Kheradvar, A., and Jafarkhani, H. (2016). A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri, Medical Image Analysis 30,108–119 | Khác | |||||||
[2]. Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., Heng, P.-A., et al. (2018).Deep learning techniques for automatic MRI cardiac Multi-Structures segmentation and diagnosis: Is the problemsolved? IEEE Transactions on Medical Imaging 37, 2514–2525 | Khác | |||||||
[4]. Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., et al. (2018).Attention U-Net:Learning where to look for the pancreas, Medical Imaging with Deep Learning.1804.03999 | Khác | |||||||
[6]. Chen Chen, Chen Qin, Huaqi Qiu (2020). Deep Learning for Cardiac Image Segmentation: A Review, Frontiers in Cardiovascular Medicine | Khác | |||||||
[7]. Khened, M., Kollerathu, V. A., and Krishnamurthi, G. (2019). Fully convolutional multi- scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers, Medical Image Analysis 51, 21–45 | Khác | |||||||
[8]. Jonathan Long, Evan Shelhamer, Trevor Darrell (2015). Fully Convolutional Networks for Semantic Segmentation, arXiv:1411.4038v2 [cs.CV] 8 Mar 2015 | Khác | |||||||
[10]. Sunny Brook Cardiac Dataset, 2009 - Cardiac MR Left Ventricle Segmentation Challenge | Khác | |||||||
[12]. Chen Chen, Chen Qin, Huaqi Qiu, Giacomo Tarroni, Review Frontiers in Cardiovascular | Khác | |||||||
[13]. Foivos I. Diakogiannis, Franỗois Waldner, Peter Caccetta, Chen Wu (2019), ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data | Khác | |||||||
[14]. Nabil Ibtehaz, M. Sohel Rahman, (2019). MultiResUNet : Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation | Khác | |||||||
[15]. Ange Lou, Shuyue Guan, Murray Loew (2020), DC-UNet: Rethinking the U-Net Architecture with Dual Channel Efficient CNN for Medical Images Segmentation | Khác | |||||||
[16]. Nhat-Minh Le, Dinh-Hung Le, Van-Truong Pham, Thi-Thao Tran (2021). DR-Unet:Rethinking the ResUnet++ Architecture with Dual ResPath skip connection for Nuclei segmentation, 2021 8th NAFOSTED | Khác | |||||||
[18]. Image Classification vs Semantic Segmentation vs Instance Segmentation, Nirmala Murali, 2021 | Khác | |||||||
[19]. Medical image segmentation: hard and soft computing approaches, Prajawal Sinha, Mayur Tuteja (2020) | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN