1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Báo cáo bài tập lớn đại số tuyến tính ứng dụng svd vào mechine learning

14 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 14
Dung lượng 1,75 MB

Nội dung

  BÁO CÁO BÀI TẬP LỚN ĐẠI SỐ TUYẾN TÍNH ỨNG DỤNG SVD VÀO MECHINE LEARNING ●   GVHD: Nguyễn Hữu Hiệp ● Lớp L19 - Nhóm THÀNH VIÊN TRONG NHĨM STT Họ tên MSSV Dương Hồng Ân 1912635 Nguyễn Thị Việt 1915913 Hà Trần Quang Trung 2014874 Trần Viết Việt Anh 2112822   NỘI DUNG 01   02  Ví dụ SVD Machine Learning Cơ sở lý thuyết SVD Giới thiệu 04 03   05   Thách thức hạn chế    GIỚI THIỆU 06 Kết luận   1.1 Giới thiệu phân ch suy biến SVD  Phương pháp phân ch suy biến (Singular Value Decomposion) viết tắt SVD, phương pháp thuộc nhóm matrix factorizaon phát triển lần đầu nhà hình học vi phân  Phương pháp SVD phát triển dựa nh chất ma trận trực giao ma trận đường chéo để m ma trận xấp xỉ với ma trận gốc   1.2 Machine Learning  Machine Learning lĩnh vực trí tuệ nhân tạo (AI)  Mục êu Machine Learning hiểu cấu trúc liệu điều chỉnh liệu thành model mà người hiểu sử dụng   CƠ SỞ LÝ THUYẾT CỦA PHÂN TÍCH SUY BIẾN SVD   2.1 Mục êu phân ch suy biến SVD  Phương pháp SVD m lớp ma trận xấp xỉ tốt với ma trận cho trước dựa khoảng cách norm Frobenios ma trận  Quá trình nhân ma trận thực chất trình biến đổi điểm liệu ma trận gốc thông qua phép xoay trục (rotaon) phép thay đổi độ lớn (scaling) từ tạo điểm liệu không gian   2.2 Quá trình phân ch SVD ma trận  Biểu diễn SVD qua trường hợp ma trận A Trường hợp: m < n   2.2 Quá trình phân ch SVD ma trận  Biểu diễn SVD qua trường hợp ma trận A Trường hợp: m > n   2.2 Quá trình phân ch SVD ma trận   Nguồn gốc SVD Compact SVD (SVD gọn nhẹ hơn)   Ví dụ minh hoạ với m=4, n=6, r=2   SVD TRONG MACHINE LEARNING     Dimensionality Reducon  .   n    ơ    h  g    n    ọ   r  t   n  a    u    q  t   í   u  ẫ     m   g    n    ữ    h    n   ỏ    b i  ạ    o  l  à  v   u  ệ i l   ữ    d  g    n    o   r  t    n  ả    b   ơ   c   u  ẫ     m   c  á   c    m       h   c  á   c  g    n  ằ    B   u  ệ i l   ữ    d   p  ậ   t  a    ủ   c  c    ớ    ư    h   t   h   c   í  k    m   ả i   G      • Data Compression    n  ê i l  t   í   ố   s   ơ   t  c  e   v  c  á   c  à  v  t    ấ    h    n  g    n    ọ   r  t   n  a    u    q  t   í   ố   s ị  r  t  á i  g  c  á   c i  ạ l   ữ  i  g ỉ   h   c    h   c  á   c  g    n  ằ    b   n    ơ    h  g    n  ă    n   h    n      t   í  g    n    ụ    d   ử   s   h   c  á   c  g    n  ằ    b   u  ệ i l   ữ    d   n  ễ i   d   u    ể i   B      • 3.1 Cách SVD sử dụng Machine Learing  .   n  a    u    q Matrix Approximaon  .   n    ơ    h   n  ả i  g   n    ơ    đ  ,   n    ơ    h   ỏ    h    n   n  ậ   r  t  a     m   t   ộ     m   g    n  ằ    b   p  ạ   t  c   ứ    h    p ,   n    ớ  l   n  ậ   r  t  a     m   t   ộ     m   g    n    ợ    ư  l  c    ớ     Ư    • Collaborave Filtering  .   n    ớ  l   n  ậ   r  t  a     m   t   ộ     m   g    n    o   r  t  c    ụ     m   c  á   c  à  v  g    n    ù    d i   ờ    ư   g    n  a    ữ  i  g  ệ    h   n  a    u    q i   ố     m    h    n  ì   h   ơ     m    p  ậ l   h   c  á   c   g    n  ằ    b  t    ấ    u   x  ề    đ  g    n    ố    h   t  ệ    h  c  á   c  g    n    o   r  t  g    n    ù    d i   ờ    ư   g    n  a    ủ   c   h   c   í   h   t   ở   s   n  á    o    đ   ự    D    • Content 3.2 Các thuật toán Machine LearningFiltering sử dụng SVD PCA     • Hệ thống gợi ý   Những thuật tốn liên quan đến nhận dạng khn mặt sơ khai ứng dụng từ PCA SVD để biểu diễn khuôn mặt kết hợp tuyến nh “egenfaces” •   Ứng dụng m kiếm mối quan hệ người dùng sản phẩm để tối đa hóa tương tác người dùng với sản phẩm, đề xuất video nhạc có liên quan để tạo danh sách phát cho người dùng họ tương tác với mục liên quan •   Ý tưởng phương pháp dựa nội dung cố gắng xây dựng mơ hình, dựa “nh năng” có sẵn, giải thích tương tác người dùng mục quan sát   3.3 Lợi ích việc sử dụng SVD Machine Learning Hiệu suất Kích thước mơ hình Khả mở rộng Tính điểm PCA   VÍ DỤ VỀ ỨNG DỤNG CỦA SVD TRONG MACHINE LEARNING   4.1 Phân ch SVD ứng dụng nén ảnh   4.2 Ứng dụng SVD hệ gợi ý  Hệ gợi ý dựa nội dung- Content-based Recommendaon Systems   4.2 Ứng dụng SVD hệ gợi ý  Hệ gợi ý dựa nội dung- Content-based Recommendaon Systems   4.2 Ứng dụng SVD hệ gợi ý  Neighborhood-Based Collaborave Filtering   4.2 Ứng dụng SVD hệ gợi ý  Matrix factorizaon  Một ứng dụng thành cơng mơ hình yếu tố ềm ẩn dựa Phân ch ma trận thành nhân tử (Matrix Factorizaon, Matrix Decomposion)   Kết thi Nelix Prize chứng minh, mơ hình phân ch ma trận thành nhân tử vượt trội so với kỹ thuật hàng xóm gần cổ điển để đưa khuyến nghị sản phẩm, cho phép kết hợp thông n bổ sung phản hồi ngầm, hiệu ứng thời gian mức độ n cậy   THÁCH THỨC VÀ HẠN CHẾ KHI SỬ DỤNG TRONG SVD TRONG MACHINE LEARNING   5.1 Các thách thức sử dụng SVD Machine Learning  Độ phức tạp nh toán: Phép nh SVD có độ phức tạp cao, đặc biệt liệu lớn  Giới hạn nhớ: SVD yêu cầu lưu trữ ma trận toàn phần nhớ, điều gây vấn đề nhớ cho liệu lớn  Khả sử dụng liệu thưa: SVD không phù hợp với liệu thưa, nghĩa liệu với số lượng giá trị khơng xác định (hoặc khơng có) ma trận   5.2 Các hạn chế sử dụng SVD Machine Learning Khả giải thích kết Khó sử dụng liệu có cấu trúc đặc biệt Hạn chế độ xác Hạn chế chế độ Hạn chế chọn kích thước KẾT LUẬN      SVD công cụ quan trọng đại số tuyến nh có nhiều ứng dụng nhiều lĩnh vực khác nhau, từ xử lý số liệu đến học máy xử lý n hiệu  Phân ch SVD sử dụng Machine Learning mang lại nhiều ứng dụng nhiều lĩnh vực nén ảnh, ứng dụng hệ thống gợi ý,   CẢM ƠN THẦY VÀ CÁC BẠN ĐÃ LẮNG NGHE!

Ngày đăng: 24/05/2023, 15:02

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w