Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian Oxyz, cho mặt cầu (S ) x2 + y2 + z2 − 2x − 2y + 4z − 1[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B − C D 6 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 0; 3) B A(1; 0; 3) C A(1; 2; 0) D A(0; 2; 3) R5 dx = ln T Giá trị T là: 2x − √ A T = B T = C T = 81 D T = Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D Câu Biết Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32 32π 8π B V = C V = D V = A V = 3 5 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 A (m ) B (m ) C (m2 ) D 3(m2 ) Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; −1; 2) B I(0; 1; 2) C I(1; 1; 2) D I(0; 1; −2) Câu Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ−1 B y′ = xπ−1 C y′ = πxπ D y′ = xπ−1 π R dx = F(x) + C Khẳng định đúng? Câu 10 Cho x 1 A F ′ (x) = B F ′ (x) = − C F ′ (x) = lnx D F ′ (x) = x x x Câu 11 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A πrl2 B πrl C πr2 l D 2πrl 3 Câu 12 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d = R B d < R C d > R D d = Trang 1/5 Mã đề 001 Câu 13 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D 2x + Câu 14 Tiệm cận ngang đồ thị hàm số y = đường thẳng có phương trình: 3x − 1 B y = − C y = D y = − A y = 3 3 Câu 15 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (12; +∞) C (−∞; 3) D (2; 3) Câu 16 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 17 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = 2i B P = + i C P = D P = √ Câu 18 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B −1 ≤ m ≤ C m ≥ m ≤ D m ≥ m ≤ −1 Câu 19 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? C z · z = a2 − b2 D z − z = 2a A |z2 | = |z|2 B z + z = 2bi − 2i (1 − i)(2 + i) Câu 20 Phần thực số phức z = + 2−i + 3i 29 29 11 11 A B − C D − 13 13 13 13 + 2i + i2017 có tổng phần thực phần ảo Câu 21 Số phức z = 2−i A B C D -1 Câu 22 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 + 2i B 11 + 2i C −3 − 2i D −3 − 10i Câu 23 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −7 B C D −3 2(1 + 2i) Câu 24 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 (1 + i)(2 + i) (1 − i)(2 − i) Câu 25 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z số ảo B |z| = C z = D z = z z Câu 26 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ A f (x)dx = √ + C B f (x)dx = 2x + + C 2x + R R √ 1√ C f (x)dx = 2x + + C D f (x) = 2x + + C Câu 27 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(1; 4; 4) C C(1; 0; 2) D C(−1; −4; 4) Trang 2/5 Mã đề 001 Câu 28 Cho A R1 f (x) = R1 R g(x) = R1 [ f (x) − 2g(x)] B 12 C −8 D −3 R4 R4 R3 Câu 29 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D v a` 0 Câu 30 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân bằng: A 2025 B C −2024 D 2024 R2 −1 f ′ (x) Câu 31 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x + y + z − = B x − = C z − = D y − = −−→ Câu 32 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (3; 1; 1) C (−1; −1; −3) D (3; 3; −1) R8 R4 R4 Câu 33 Biết f (x) = −2; f (x) = 3; g(x) = Mệnh đề sau sai? R4 R4 A [ f (x) + g(x)] = 10 B [4 f (x) − 2g(x)] = −2 R8 R8 C f (x) = −5 D f (x) = Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| > B |A| ≤ 2z − i Mệnh đề sau đúng? + iz C |A| ≥ D |A| < Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ C D A B √ 2 Câu 36 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 97 85 A T = B T = C T = 13 D T = 13 3 Câu 37 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 10 C D A 15 Câu 38 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i D |w|min = A |w|min = B |w|min = C |w|min = 2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = (|z| − 4)2 C P = |z|2 − D P = |z|2 − √ 2 Câu 40 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Trang 3/5 Mã đề 001 Câu 41 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 √ A z số thực Tính giá trị biểu + z2 thức B C D Câu 42 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P B điểm R bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm Q D điểm S Câu 43 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (3; 5) B (1; 5) C (−1; 1) D (−3; 0) Câu 44 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A −2x − y + 4z − = B 2x + y − 4z + = C 2x + y − 4z + = D 2x + y − 4z + = Câu 45 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 4a3 B 3a3 C 6a3 D 12a3 √ Câu 46 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ [ 1; 3] B Bất phương trình vơ nghiệm C Bất phương trình với x ∈ (4; +∞) D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 47 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2a+b+c C P = 2abc D P = 2a+2b+3c Câu 48 Chọn mệnh đề mệnh đề sau: R R e2x x x 2x +C A dx =5 + C B e dx = R R (2x + 1)3 C (2x + 1)2 dx = + C D sin xdx = cos x + C Câu 49 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 x2 Câu 50 Tính tích tất nghiệm phương trình (log2 (4x)) + log2 ( ) = 8 1 1 A B C D 128 32 64 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001