1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đề Luyện Thi Thpt Môn Toán (690).Pdf

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 121,69 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình phẳng (D) giới hạn bởi các đường y = √ x, y = x, x = 2 quay qua[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối tròn xoay tạo thành? 10π π A V = π B V = C V = D V = 3 Câu Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 60a3 B 30a3 C 100a3 D 20a3 Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (−2; −3; −1) C M ′ (2; −3; −1) D M ′ (2; 3; 1) Câu Tính I = R1 √3 7x + 1dx A I = 45 28 B I = 60 28 C I = 20 D I = 21 Câu Khối trụ có bán kính đáy chiều cao Rthì thể tích A 6πR3 B 2πR3 C πR3 D 4πR3 √ x Câu Đồ thị hàm số y = ( − 1) có dạng hình H1, H2, H3, H4 sau đây? A (H3) B (H1) C (H4) D (H2) Câu √Hình nón có bán kính đáy R, đường sinh l diện tích xung quanh nó√bằng A 2π l2 − R2 B 2πRl C πRl D π l2 − R2 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π A 3π B C 3π D √ 3 R Câu R9 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C √ Câu 10 Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 A ( ; +∞) B (0; 1) C (1; +∞) D (0; ) 4 Câu 11 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; +∞) B ( ; 2] [22; +∞) C [22; +∞) D [ ; 2] [22; +∞) 4 Câu 12 Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = −x4 + 2x2 + C y = −x4 + D y = x4 + Trang 1/5 Mã đề 001 Câu 13 Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 4m2 − m2 − 12 m2 − 12 A B C D 2m 2m 2m m Câu 14 Đạo hàm hàm số y = log √2 3x − là: 6 2 A y′ = B y′ = C y′ = D y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu 15 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 2x + 2017 (1) Mệnh đề đúng? Câu 16 Cho hàm số y = x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 B Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng Câu 17 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ 2 a b2 − 3a2 3ab B VS ABC = A VS ABC = 12 12 √ √ a2 3b2 − a2 3a2 b C VS ABC = D VS ABC = 12 12 Câu 18 Phương trình tiếp tuyến với đồ thị hàm số y = log5 x điểm có hồnh độ x = là: x x − B y = −1+ A y = ln ln 5 ln ln x x C y = +1− D y = + ln ln 5 ln Câu 19 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 28 (m) B S = 24 (m) C S = 12 (m) D S = 20 (m) Câu 20 Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B loga x > loga y C ln x > ln y D log x > log y a a Câu 21 Tìm tất giá trị tham số m để giá trị lớn hàm số y = −x2 + 2mx − − 2m đoạn [−1; 2] nhỏ A m ≥ B m ∈ (−1; 2) C −1 < m < D m ∈ (0; 2) Câu 22 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 23 Hàm số sau khơng có cực trị? A y = x4 + 3x2 + B y = x2 C y = x − 6x + 12x − D y = cos x Trang 2/5 Mã đề 001 √ ′ ′ ′ ′ Câu 24 Cho lăng trụ ABC.A B C có đáy a, AA = 3a Thể tích khối lăng trụ cho là: √ √ A a3 B 3a3 C 3a3 D 3a3 Câu 25 Hàm số sau đồng biến R? A y = x2 C y = tan x √ √ B y = x2 + x + − x2 − x + D y = x4 + 3x2 + Câu 26 Đồ thị hình bên đồ thị hàm số nào? −2x + 2x − 2x + A y = B y = C y = 1−x x−1 x+1 D y = 2x + x+1 Câu 27 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 48.621.980 đồng B 43.091.358 đồng C 45.188.656 đồng D 46.538667 đồng Câu 28 Tìm tất giá trị tham số m để hàm số y = (m + 2) biến R A m ≤ B m ≤ −2 C m < −3 x3 − (m + 2)x2 + (m − 8)x + m5 nghịch D m ≥ −8 Câu 29 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 13 3a 10 3a 13 a B C D A 26 20 13 Câu 30 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho√tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S B 106, 25dm2 C 125dm2 D 75dm2 A 50 5dm2 √ Câu 31 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích √ khối chóp S ABC √ √ √ a3 a3 2a 3 B C a D A Câu 32 Cho hình chóp S ABCD có cạnh đáy a Gọi M, N trung điểm SA BC o Biết góc √ MN mặt phẳng √ (ABCD) 60 Tính sin góc MN và√mặt phẳng (S BD) 10 B C D A 5 Câu 33 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 2π B 4π C 8π D 3π √ 2x − x2 + Câu 34 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 35 Hàm số hàm số sau đồng biến R 4x + B y = x4 + 3x2 A y = x+2 C y = x3 + 3x2 + 6x − D y = −x3 − x2 − 5x cos x π Câu 36 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 3π 6π 6π A B ln + C ln + D ln + 5 5 Trang 3/5 Mã đề 001 Câu 37 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 6π C 12π D 8π Câu 38 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = C (x − 1)2 + (y − 2)2 + (z − 4)2 = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 39 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 4a C 6a D 9a3 A 3a Câu 40 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = √ A R = 15 B R = C R = D R = 14 Câu 41 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; ′ AA′ =√2a Gọi α số đo góc √ hai đường thẳng AC DB Tính giá trị cos α.√ 3 A B C D 2 Câu 42 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 15 πa 17 πa2 17 πa 17 B C D A 4 Câu 43 Chọn mệnh đề mệnh đề sau: R R e2x A e2x dx = +C B x dx =5 x + C R R (2x + 1)3 + C D sin xdx = cos x + C C (2x + 1)2 dx = Câu 44 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx B 1 R3 R2 C R3 |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = − D R3 R3 (x2 − 2x)dx R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx Câu 45 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 √ 2x − x2 + Câu 46 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 47 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x4 + 3x2 4x + C y = x3 + 3x2 + 6x − D y = x+2 Trang 4/5 Mã đề 001 Câu 48 Biết π R2 sin 2xdx = ea Khi giá trị a là: A ln B − ln C D Câu 49 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 50 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > m < − C m > m < −1 D m > Trang 5/5 Mã đề 001

Ngày đăng: 04/04/2023, 11:32