1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Tổng hợp semi ipn hydrogel từ n, n dimethylacrylamide và maleic acid ứng dụng trong kỹ thuật nông nghiệp

123 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 123
Dung lượng 10,05 MB

Nội dung

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH ĐỒ ÁN TỐT NGHIỆP NGÀNH CNKT HÓA POLYMER TỔNG HỢP SEMI-IPN HYDROGEL TỪ N, N’-DIMETHYLACRYLAMIDE VÀ MALEIC ACID ỨNG DỤNG TRONG KỸ THUẬT NÔNG NGHIỆP GVHD: TS HUỲNH NGUYỄN ANH TUẤN SVTH: NGUYỄN TRỌNG TÍN SKL008831 Tp.Hồ Chí Minh, tháng 8/2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP HỒ CHÍ MINH KHOA CƠNG NGHỆ HĨA HỌC VÀ THỰC PHẨM BỘ MƠN CƠNG NGHỆ HĨA HỌC  KHÓA LUẬN TỐT NGHIỆP TỔNG HỢP SEMI-IPN HYDROGEL TỪ N, N’-DIMETHYLACRYLAMIDE VÀ MALEIC ACID ỨNG DỤNG TRONG KỸ THUẬT NÔNG NGHIỆP GVHD: TS Huỳnh Nguyễn Anh Tuấn SVTH: Ngành Lớp MSSV Nguyễn Trọng Tính CNKT Hóa Polymer 18128P 18128064 Tp Hồ Chí Minh, tháng 08 năm 2022 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT TP HỒ CHÍ MINH KHOA CƠNG NGHỆ HĨA HỌC VÀ THỰC PHẨM BỘ MƠN CƠNG NGHỆ HĨA HỌC  KHÓA LUẬN TỐT NGHIỆP TỔNG HỢP SEMI-IPN HYDROGEL TỪ N, N’-DIMETHYLACRYLAMIDE VÀ MALEIC ACID ỨNG DỤNG TRONG KỸ THUẬT NÔNG NGHIỆP GVHD: TS Huỳnh Nguyễn Anh Tuấn SVTH: Ngành Lớp MSSV Nguyễn Trọng Tính CNKT Hóa Polymer 18128P 18128064 Tp Hồ Chí Minh, tháng 08 năm 2022 TĨM TẮT KHÓA LUẬN Tên đề tài: Tổng hợp semi-IPN hydrogel từ N, N’-Dimethylacrylamide Maleic acid ứng dụng kỹ thuật nơng nghiệp Việc sử dụng nước phân bón nông nghiệp theo phương thức truyền thống rải, phun, … làm thất thoát lượng lớn tác nhân gây tình trạng nhiễm nghiêm trọng Để khắc phục tình trạng cần có loại vật liệu có khả hấp thụ giải phóng có kiểm sốt nước, chất dinh dưỡng Trong khóa luận này, semi-IPN hydrogel (SH) tổng hợp từ homopolymer PDMA, monomer N, N’-Dimethylacrylamide monomer Maleic acid theo kỹ thuật trùng hợp gốc tự Sau tổng hợp, vật liệu biến tính cách sử dụng xúc tác acid mạnh HCl (SA) base mạnh KOH (SB) Ngồi ra, mẫu hydrogel thơng thường (CH) tổng hợp để so sánh Vật liệu sau tổng hợp đánh giá phương pháp lý – hóa phép đo FTIR, đo lưu biến, tính, DSC, TGA, SEM, EDX, tốc độ trương nở tỉ lệ trương nở môi trường pH khác Sau mẫu SB sử dụng để khảo sát khả hấp thụ giải phóng Urea hướng đến ứng dụng lĩnh vực nơng nghiệp Kết ghi nhận cho thấy hệ semi-IPN hydrogel có đặc tính tốt so với hydrogel thông thường Cụ thể tốc độ trương cân SH 2974,603% 710 phút CH 2508, 949% 790 phút Ngoài ra, so sánh hệ semi-IPN hydrogel SB có tốc độ trương nước giai đoạn đầu nhanh tỉ lệ trương cân lớn so với SH SA Khảo sát động học trình trương nở nước cho thấy hệ số mũ khuếch tán n hydrogel có giá trị từ 0,5543 đến 0,6763, điều trình trương nở hydrogel theo chế khuếch tán non – Fickian Hệ số khuếch tán (D) SB cao nhất, cụ thể D có giá trị 1,31.10-3, 8,51.10-4, 5,18.10-4 3,40.10-4 cm2/phút tương ứng cho mẫu SB, SH, CH SA Bên cạnh mẫu semi-IPN hydrogel nhìn chung có tính cao hydrogel thơng thường với ứng suất nén đo mẫu CH, SH, SB SA 136,31 ± 3,97 kPa; 226,27 ± 9,05 kPa; 259,86 ± 3,80 kPa; 353,57 ± 8,84 kPa Theo kết phân tích nhiệt DSC sau q trình biến tính semi-IPN hydrogel xúc tác acid/base, mẫu có khác biệt rõ i D0 D3 D5 D8 D10 D12 D14 D16 D18 D20 D22 87 Hình 3.34: Kết theo dõi phát triển cải bẹ xanh mẫu đất có bón SB/Urea vào đất mốc thời gian từ ngày đến ngày 22 Quá trình theo dõi phát triển cải bẹ xanh trồng đất bình thường đất/SB/Urea thể hiện hình 3.33 3.34 Từ kết quan sát hình thái trồng đất bình thường ngày thứ có tượng úa vàng héo dần; trồng đất/SB/Urea phát triển xanh tốt, chiều dài thay đổi rõ rệt Tại ngày 7, trồng đất bình thường chết hẳn, phát triển ngày theo dõi trồng đất/SB/Urea Theo ngày 14, có màu xanh thẫm bẹ xòe rộng, sang ngày 20 bắt đầu chuyển sang giai đoạn héo, vàng chết hẳn ngày 22 Qua đó, nhận thấy trồng đất/SB/Urea phát triển xanh tốt thời gian sống dài trồng đất bình thường Hình 3.35: Kết theo dõi phát triển chiều dài cải bẹ xanh theo thời gian Hơn thế, phát triển chiều dài cải bẹ xanh trồng đất bình thường đất/SB/Urea theo dõi hàng ngày thể hình 3.35 bảng 3.10 Qua đó, nhận thấy ngày ngày chiều dài 4,86 cm 6,12 cm với trồng đất bình thường; Chiều dài có xu hướng tăng nhanh với 4,92 cm 7,06 cm với trồng đất/SB/Urea Thêm vào đó, chiều dài trồng đất 88 bình thường khơng cịn ghi nhận kết sau ngày chiều dài tiếp tục có thay đổi trồng đất/SB/Urea với 8,20 cm 10,41 cm vào ngày ngày 17 Điều giải thích có mặt SB/Urea đất nên cải cung cấp nước chất dinh dưỡng đầy đủ theo chế hoạt động hydrogel giải phóng phân bón chậm (SRFHs) nên chiều dài thay đổi nhanh khả sống cải kéo dài Bảng 3.10: Kết theo dõi chiều dài cải bẹ xanh theo thời gian Ngày Chiều dài cải bẹ xanh, cm Đất bình thường Đất/SB/Urea 4,86 4,92 5,24 5,43 5,41 5,81 6,00 6,14 6,10 6,52 6,12 7,06 - 8,20 - 9,10 - 9,52 10 - 9,76 11 - 10,02 12 - 10,20 13 - 10,30 14 - 10,32 15 - 10,38 16 - 10,40 17 - 10,41 18 - 10,41 89 KẾT LUẬN VÀ KIẾN NGHỊ Kết luận Qua trình thực luận văn với đề tài “TỔNG HỢP SEMI-IPN HYDROGEL TỪ N, N’-DIMETHYLACRYLAMIDE VÀ MALEIC ACID ỨNG DỤNG TRONG KỸ THUẬT NÔNG NGHIỆP”, luận văn đạt kết sau: - Tổng hợp thành công hompolymer PDMA trạng thái lỏng độ nhớt cao, suốt với Mw = 209.352 g/mol; Mn = 153.629 g/mol PDI = 1,363 - Tổng hợp thành công hydrogel thông thường semi-IPN hydrogel (SH) chế trùng hợp gốc tự Q trình biến tính semi-IPN hydrogel diễn thành công xúc tác acid/base - Kết SEM cho mẫu hydrogel, đường kính lỗ xốp đạt mẫu CH, SH, SA, SB 188,60 ± 34,40 ֵm; 330, 80 ± 78,00 m; 130, 94 ± 28,13m; 341,80 ± 49,47 m Đường kính mẫu có xu hướng tăng lên thêm linear vào mạng mẫu sau biến tính xúc tác base có kích thước lớn - Kết khảo sát DSC cho thấy khơng có khác biệt nhiều nhiệt Tg CH SH Sau biến tính, giá trị có thay đổi với Tg 108,1℃ SA; 140,6℃ SB Kết khảo sát TGA cho thấy tính bền nhiệt mẫu semi-IPN hydrogel tăng lên với khối lượng lại sau phân tích nhiệt SH, SA, SB 18,083%; 23,345%; 34,008% - Khả hấp thụ nước lớn thể mẫu SB với SR = 5439,0% 1310 phút Thêm vào qua kết khảo sát động học cho thấy nước hấp thụ vào mạng theo định luật non-Fickian, tức trình diễn theo chế khuếch tán nới lỏng mạng hydrogel với hệ số khuếch tán D = 1,311.10-3 cm2/min - Hàm lượng Urea hấp thụ tối đa SB 152,91mg/g thể tương thích gần với mơ hình hấp thụ đẳng nhiệt Langmuir Sau đó, lượng Urea lớn giải phóng từ SB 83,62% pH 8,0 4320 phút theo tương tích gần mơ hình động học K – P nhận định q trình giải phóng Urea diễn theo Quasi – Fickian 90 - Kết khảo sát độ ẩm mẫu đất/hydrogel đồ thị phân tích độ ẩm mẫu đất/SB có xu hướng giảm chậm với 73,881% 28,788% vào ngày ngày 10; sau cấp nước giai đoạn 2, mẫu đất/SB có độ ẩm đạt lớn mẫu đất/hydrogel khảo sát với 87,873% ngày 11 Bên cạnh đó, q trình theo dõi pH mẫu đất/hydrogel, có khoảng giá trị 7,802 < pH < 7,984 Kết cho thấy SB khả hấp thụ lượng nước lớn hiệu trì độ ẩm đất trồng, đồng thời chất lượng đất không bị thay đổi áp dụng hydrogel vào - Khi khảo sát phát triển cải bẹ xanh, ngày ngày chiều dài có xu hướng tăng nhanh với 4,92 cm 7,06 cm với trồng đất/SB/Urea Chiều dài tiếp tục phát triển với 8,2 cm 10,41 cm vào ngày ngày 17 Thêm vào thời gian sống trồng mẫu đất bình thường ngày; đất/SB/Urea 21 ngày Qua đó, nhận thấy trồng đất/SB/Urea phát triển vượt trộivà thời gian sống dài trồng đất bình thường Có thể kết luận SB khơng hồ chứa nước dự trữ cung cấp nước cho vùng rễ cần nước mà đảm bảo nhu cầu dinh dưỡng cho trồng 91 Kiến nghị Nông nghiệp lĩnh vực dễ tiếp cận triển khai thử nghiệm Khép lại đề tài trên, khoảng thời gian giới hạn tháng nên cịn nhiều thiếu sót chưa khai thác ưu điểm từ loại vật liệu hydrogel cách triệt để, tơi có số đề xuất phát triển nghiên cứu tương lai sau: - Tổng hợp copolymer P (DMA – co – MA) đóng vai trị linear cấu trúc mạng semi – IPN hydrogel Từ so sánh đặc tính với mẫu hydrogel nghiên cứu tổng hợp dựa linear homopolymer PDMA - Khảo sát khả hấp thụ urea cho toàn mẫu hydrogel (CH, SH, SA, SB) Tiếp theo theo dõi khả giải phóng urea môi trường pH 2,0; pH 4,0; pH 6,0 pH 8,0; pH 10,0; pH 12,0 Cuối so sánh thực nghiệm đánh giá mơi trường giải phóng urea mẫu hydrogel thơng qua bốn mơ hình động học giải phóng urea trình bày mục 1.5.10 - Tận dụng tính chất độc đáo PDMA theo xu hướng hình thành “hiệu ứng bắc cầu” để keo tụ ion kim loại độc hại, thuốc nhuộm, … - Thực nghiệm trồng loại họ đậu đậu xanh, đậu nành,… Từ đánh giá thay đổi trình hoa kết trái áp dụng mẫu đất/hydrogel 92 TÀI LIỆU THAM KHẢO [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] Hải Hà, “Cuộc xung đột Nga – Ukraine gây lạm phát chậm đà phục hồi kinh tế giới,” thoibaotaichinhvietnam.vn, Mar 11, 2022 https://thoibaotaichinhvietnam.vn/cuoc-xung-dot-nga-ukraine-gay-lam-phat-vacham-da-phuc-hoi-kinh-te-the-gioi-101600.html (accessed Aug 01, 2022) Thanh Bình, “Kinh tế Việt Nam với ảnh hưởng xung đột Nga - Ukraine,” tapchinganhang.gov.vn, Apr 29, 2022 https://tapchinganhang.gov.vn/kinh-te-vietnam-voi-anh-huong-xung-dot-nga-ukraine.htm (accessed Aug 03, 2022) Bích Hồng, “Nơng nghiệp - trụ đỡ kinh tế vững vàng vượt sóng đích,” 2021, Dec 25, 2021 https://www.vietnamplus.vn/nong-nghiep-tru-do-cua-nen-kinhte-vung-vang-vuot-song-ve-dich/764971.vnp (accessed Jul 01, 2022) Chu Khôi, “Xung đột Nga – Ukraina: Ngành nông nghiệp Việt ‘vạ lây,’” 2022, Jul 03, 2022 https://vneconomy.vn/xung-dot-nga-ukraina-nganh-nong-nghiep-viet-valay.htm (accessed Jul 18, 2022) R A Ramli, “Slow release fertilizer hydrogels: A review,” Polymer Chemistry, vol 10, no 45, pp 6073–6090, 2019, doi: 10.1039/c9py01036j A Akhmetzhan et al., “A short review on the n,n-dimethylacrylamide-based hydrogels,” Gels, vol 7, no MDPI, Dec 01, 2021 doi: 10.3390/gels7040234 D Alpaslan, T Erşen Dudu, Ş Kubilay, and N Aktaş, “Synthesis and characterization of biocompatible poly(maleic acid-co-citric acid) microparticles as a smart carrier for thiamine,” Polymer Bulletin, vol 78, no 11, pp 6305–6320, Nov 2021, doi: 10.1007/s00289-020-03405-y R Kaur, R Sharma, and G K Chahal, “Synthesis of lignin-based hydrogels and their applications in agriculture: A review,” Chemical Papers, vol 75, no 9, pp 4465– 4478, 2021, doi: 10.1007/s11696-021-01712-w H S Elshafie and I Camele, “Applications of absorbent polymers for sustainable plant protection and crop yield,” Sustainability (Switzerland), vol 13, no 6, 2021, doi: 10.3390/su13063253 N Zoratto and P Matricardi, Semi-IPN- and IPN-Based Hydrogels S K Patra, R Poddar, M Brestic, and P U Acharjee, “Prospects of Hydrogels in Agriculture for Enhancing Crop and Water Review Article Prospects of Hydrogels in Agriculture for Enhancing Crop and Water Productivity under Water Deficit Condition,” no June, 2022, doi: 10.1155/2022/4914836 M R Guilherme et al., “Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review,” European Polymer Journal, vol 72, pp 365–385, 2015, doi: 10.1016/j.eurpolymj.2015.04.017 M R Barakat, S El-Kosary, T I Borham, and M H Abd-Elnafea, “Effect of Hydrogel Soil Addition under Different Irrigation Levels on Grandnain Banana Plants,” Journal of Horticultural Science & Ornamental Plants, vol 7, no 1, pp 19– 28, 2015, doi: 10.5829/idosi.jhsop.2015.7.1.1152 93 [14] U K Mandal et al., “Evaluating Hydrogel Application on Soil Water Availability and Crop Productivity in Semiarid Tropical Red Soil,” Indian Journal of Dryland Agricultural Research and Development, vol 30, no 2, p 1, 2015, doi: 10.5958/2231-6701.2015.00018.4 [15] Y.-T Wang and L L Gregg, “Hydrophilic Polymers—Their Response to Soil Amendments and Effect on Properties of a Soilless Potting Mix,” Journal of the American Society for Horticultural Science, vol 115, no 6, pp 943–948, 2019, doi: 10.21273/jashs.115.6.943 [16] Y Wei and D J Durian, “Rain water transport and storage in a model sandy soil with hydrogel particle additives,” European Physical Journal E, vol 37, no 10, pp 1–11, 2014, doi: 10.1140/epje/i2014-14097-x [17] E R Konzen, M C Navroski, G Friederichs, L H Ferrari, M de O Pereira, and D Felippe, “THE USE OF HYDROGEL COMBINED WITH APPROPRIATE SUBSTRATE AND FERTILIZER IMPROVE QUALITY AND GROWTH PERFORMANCE OF Mimosa scabrella BENTH SEEDLINGS,” CERNE, vol 23, no 4, pp 473–482, Dec 2017, doi: 10.1590/01047760201723042440 [18] R A Pontes Filho, F A Gondim, and M C G Costa, “SEEDLING GROWTH OF TREE SPECIES UNDER DOSES OF HYDROGEL AND TWO LEVELS OF LUMINOSITY,” Revista Árvore, vol 42, no 1, Aug 2018, doi: 10.1590/180690882018000100012 [19] O El-Hady, S A Abo-Sedera, A H Basta, and H EL-Saied, “The role of rice strawbased hydrogels on some soil microorganisms strains,” Bio, vol 1, no 1, pp 78–84, 2012, doi: 10.5618/bio.2011.v1.n1.6 [20] X Li, J Z He, Y R Liu, and Y M Zheng, “Effects of super absorbent polymers on soil microbial properties and Chinese cabbage (Brassica chinensis) growth,” Journal of Soils and Sediments, vol 13, no 4, pp 711–719, 2013, doi: 10.1007/s11368-0130657-7 [21] J Achtenhagen and R Kreuzig, “Laboratory tests on the impact of superabsorbent polymers on transformation and sorption of xenobiotics in soil taking 14C-imazalil as an example,” Science of the Total Environment, vol 409, no 24, pp 5454–5458, Nov 2011, doi: 10.1016/j.scitotenv.2011.09.021 [22] Y Yang et al., “Effects of superabsorbent polymers on the fate of fungicidal carbendazim in soils,” Journal of Hazardous Materials, vol 328, pp 70–79, 2017, doi: 10.1016/j.jhazmat.2016.12.057 [23] P Baldrian and V Valášková, “Degradation of cellulose by basidiomycetous fungi,” FEMS Microbiology Reviews, vol 32, no 3, pp 501–521, 2008, doi: 10.1111/j.15746976.2008.00106.x [24] A C Kennedy and K L Smith, “Soil microbial diversity and the sustainability of agricultural soils,” Plant and Soil, vol 170, no 1, pp 75–86, 1995, doi: 10.1007/BF02183056 [25] A Kalhapure, R Kumar, V P Singh, and D S Pandey, “Hydrogels: A boon for increasing agricultural productivity in water-stressed environment,” Current Science, vol 111, no 11, pp 1773–1779, 2016, doi: 10.18520/cs/v111/i11/1773-1779 94 [26] B Ni, M Liu, and S Lü, “Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations,” Chemical Engineering Journal, vol 155, no 3, pp 892–898, 2009, doi: 10.1016/j.cej.2009.08.025 [27] R A Ramli, “Slow release fertilizer hydrogels: A review,” Polymer Chemistry, vol 10, no 45 Royal Society of Chemistry, pp 6073–6090, Dec 07, 2019 doi: 10.1039/c9py01036j [28] X Zhang, Y Liu, P Lu, and M Zhang, “Preparation and properties of hydrogel based on sawdust cellulose for environmentally friendly slow release fertilizers,” Green Processing and Synthesis, vol 9, no 1, pp 139–152, 2020, doi: 10.1515/gps2020-0015 [29] H Jariwala, R M Santos, J D Lauzon, A Dutta, and Y Wai Chiang, “Controlled release fertilizers (CRFs) for climate-smart agriculture practices: a comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters,” Environmental Science and Pollution Research Springer Science and Business Media Deutschland GmbH, 2022 doi: 10.1007/s11356-022-20890-y [30] M Rizwan, S R Gilani, A I Durrani, and S Naseem, “Kinetic model studies of controlled nutrient release and swelling behavior of combo hydrogel using Acer platanoides cellulose,” J Taiwan Inst Chem Eng, vol 131, p 104137, Feb 2022, doi: 10.1016/j.jtice.2021.11.004 [31] H Kolya and T Tripathy, “Biodegradable flocculants based on polyacrylamide and poly(N,N-dimethylacrylamide) grafted amylopectin,” International Journal of Biological Macromolecules, vol 70, pp 26–36, 2014, doi: 10.1016/j.ijbiomac.2014.06.028 [32] A Akhmetzhan et al., “A short review on the n,n-dimethylacrylamide-based hydrogels,” Gels, vol 7, no 4, 2021, doi: 10.3390/gels7040234 [33] F Fischer, D Zufferey, and R Tahoces, “Lower critical solution temperature in superheated water: The highest in the poly(N,N-dialkylacrylamide) series,” Polymer International, vol 60, no 8, pp 1259–1262, Aug 2011, doi: 10.1002/pi.3071 [34] L Resins, “Maleic Anhydride, Maleic Acid, and Fumaric Acid,” Van Nostrand’s Scientific Encyclopedia, no 10, 2006, doi: 10.1002/0471743984.vse8095 [35] Αθ Μπαντής, “Μελέτη Του Καρκίνου Του Προστάτου Με Την Εφαρμογή Μεθόδων Ανοσοκυτταροχημείας, in Situ Υβριδισμού Και Ανάλυσης Εικόνας: Συσχέτιση Με Προγνωστικούς Παράγοντες Και Την Κλινική Πορεία Των Ασθενών,” Τμήμα Ιατρικής, vol 3, no Wheatcroft, pp 1–8, 2003, [Online] Available: http://ieeexplore.ieee.org/document/5211872/ [36] M Shirangi, J Sastre Toraño, B Sellergren, W E Hennink, G W Somsen, and C F van Nostrum, “Methyleneation of Peptides by N , N , N , N Tetramethylethylenediamine (TEMED) under Conditions Used for Free Radical Polymerization: A Mechanistic Study,” Bioconjugate Chemistry, vol 26, no 1, pp 90–100, Jan 2015, doi: 10.1021/bc500445d 95 [37] X Q Guo, K Yuan Qiu, and X de Feng, “Studies on the kinetics and initiation mechanism of acrylamide polymerization using persulfatehliphatic diamine systems as initiator,” 1990 [38] M Włoch and J Datta, “Synthesis and polymerisation techniques of molecularly imprinted polymers,” 2019, pp 17–40 doi: 10.1016/bs.coac.2019.05.011 [39] “Chemical Reactions of Ammoniacal N.” [40] P M v Raja and A R Barron, “PHYSICAL METHODS IN CHEMISTRY AND NANO SCIENCE.” [Online] Available: https://LibreTexts.org [41] P Mohamed Shameer and P Mohamed Nishath, Exploration and enhancement on fuel stability of biodiesel: A step forward in the track of global commercialization Elsevier Ltd, 2019 doi: 10.1016/B978-0-08-102791-2.00008-8 [42] M K Singh and A Singh, “Thermal characterization of materials using differential scanning calorimeter,” in Characterization of Polymers and Fibres, Elsevier, 2022, pp 201–222 doi: 10.1016/B978-0-12-823986-5.00006-3 [43] M Abd Mutalib, M A Rahman, M H D Othman, A F Ismail, and J Jaafar, Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy Elsevier B.V., 2017 doi: 10.1016/B978-0-444-63776-5.00009-7 [44] C Peniche, M E Cohen, B Vázquez, and J San Román, “Water sorption of flexible networks based on 2-hydroxyethyl methacrylate-triethylenglycol dimethacrylate copolymers,” Polymer (Guildf), vol 38, no 24, pp 5977–5982, Nov 1997, doi: 10.1016/S0032-3861(96)01058-0 [45] S Kundakci, H G Öğüt, Ö B Üzüm, and E Karadağ, “Equilibrium Swelling Characterization and Dye Uptake Studies of Acrylamide-co-Methylenesuccinic Acid Hydrogels and Semi-IPNs with PEG,” Polymer-Plastics Technology and Engineering, vol 50, no 9, pp 947–956, Jun 2011, doi: 10.1080/03602559.2011.553862 [46] N A Peppas and N M Franson, “The swelling interface number as a criterion for prediction of diffusional solute release mechanisms in swellable polymers,” Journal of Polymer Science: Polymer Physics Edition, vol 21, no 6, pp 983–997, Jun 1983, doi: 10.1002/pol.1983.180210614 [47] P L Ritger and N A Peppas, “A simple equation for description of solute release II Fickian and anomalous release from swellable devices,” Journal of Controlled Release, vol 5, no 1, pp 37–42, Jun 1987, doi: 10.1016/0168-3659(87)90035-6 [48] A S Kipcak, O Ismail, I Doymaz, and S Piskin, “Modeling and Investigation of the Swelling Kinetics of Acrylamide-Sodium Acrylate Hydrogel,” Journal of Chemistry, vol 2014, pp 1–8, 2014, doi: 10.1155/2014/281063 [49] D da Silva Souza, G M Fernandes, B C Dias, J R Stefanelli Junior, R Sequinel, and J F da Silveira Petruci, “A Green Analytical Methodology for Detecting Adulteration in Automotive Urea-SCR Products Using Microfluidic-Paper Analytical Devices,” Sustainability, vol 14, no 6, p 3363, Mar 2022, doi: 10.3390/su14063363 96 [50] A Phonchai, S Rattana, and K Thongprajukaew, “A portable sol-gel urea colorimetric method for the determination of urea in feedstuffs,” Food Chemistry, vol 319, no August 2019, p 126545, 2020, doi: 10.1016/j.foodchem.2020.126545 [51] I Langmuir, “THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM.,” J Am Chem Soc, vol 40, no 9, pp 1361–1403, Sep 1918, doi: 10.1021/ja02242a004 [52] G Limousin, J.-P Gaudet, L Charlet, S Szenknect, V Barthès, and M Krimissa, “Sorption isotherms: A review on physical bases, modeling and measurement,” Applied Geochemistry, vol 22, no 2, pp 249–275, Feb 2007, doi: 10.1016/j.apgeochem.2006.09.010 [53] M M Dubinin, “The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces.,” Chemical Reviews, vol 60, no 2, pp 235–241, Apr 1960, doi: 10.1021/cr60204a006 [54] B Singh, S R Cattle, and D J Field, “Edaphic Soil Science, Introduction to,” in Encyclopedia of Agriculture and Food Systems, Elsevier, 2014, pp 35–58 doi: 10.1016/B978-0-444-52512-3.00092-9 [55] L Li, T Yang, R Redden, W He, and X Zong, “Soil Fertility Map for Food Legumes Production Areas in China,” Scientific Reports, vol 6, May 2016, doi: 10.1038/srep26102 [56] L Brocca, F Melone, T Moramarco, and R Morbidelli, “Spatial-temporal variability of soil moisture and its estimation across scales,” Water Resources Research, vol 46, no 2, Feb 2010, doi: 10.1029/2009WR008016 [57] L Brocca, T Tullo, F Melone, T Moramarco, and R Morbidelli, “Catchment scale soil moisture spatial–temporal variability,” Journal of Hydrology, vol 422–423, pp 63–75, Feb 2012, doi: 10.1016/j.jhydrol.2011.12.039 [58] A W Western, R B Grayson, G Blöschl, G R Willgoose, and T A McMahon, “Observed spatial organization of soil moisture and its relation to terrain indices,” Water Resources Research, vol 35, no 3, pp 797–810, Mar 1999, doi: 10.1029/1998WR900065 [59] A Mguidiche, G Provenzano, B Douh, S Khila, G Rallo, and A Boujelben, “Assessing Hydrus-2D to Simulate Soil Water Content (SWC) and Salt Accumulation Under an SDI System: Application to a Potato Crop in a Semi-Arid Area of Central Tunisia,” Irrigation and Drainage, vol 64, no 2, pp 263–274, Apr 2015, doi: 10.1002/ird.1884 [60] M Baudena, F D’Andrea, and A Provenzale, “A model for soil-vegetationatmosphere interactions in water-limited ecosystems,” Water Resources Research, vol 44, no 12, Dec 2008, doi: 10.1029/2008WR007172 [61] W Hu, M Shao, F Han, K Reichardt, and J Tan, “Watershed scale temporal stability of soil water content,” Geoderma, vol 158, no 3–4, pp 181–198, Sep 2010, doi: 10.1016/j.geoderma.2010.04.030 [62] Y Cantón, A Solé-Benet, and F Domingo, “Temporal and spatial patterns of soil moisture in semiarid badlands of SE Spain,” Journal of Hydrology, vol 285, no 1– 4, pp 199–214, Jan 2004, doi: 10.1016/j.jhydrol.2003.08.018 97 [63] R Szőllősi, “Indian Mustard (Brassica juncea L.) Seeds in Health,” in Nuts and Seeds in Health and Disease Prevention, Elsevier, 2020, pp 357–364 doi: 10.1016/B9780-12-818553-7.00025-5 [64] “How to Grow Mustard Greens (Brassica juncea),” 2017 [65] T Ersen Dudu, D Alpaslan, and N Aktas, “Superabsorbent hydrogels based on N,Ndimethylacrylamide and maleic acid for applications in agriculture as water purifier and nitrogen carrier,” Polymer Bulletin, no 0123456789, 2021, doi: 10.1007/s00289021-03918-0 [66] B Hui, Y Zhang, and L Ye, “Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal,” Chemical Engineering Journal, vol 235, pp 207–214, Jan 2014, doi: 10.1016/j.cej.2013.09.045 [67] D Yang, Y Li, and J Nie, “Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs,” Carbohydrate Polymers, vol 69, no 3, pp 538–543, Jun 2007, doi: 10.1016/j.carbpol.2007.01.008 [68] R Arezou, P Maria, and R Mehrdad, “Assessment of Soil Moisture Content Measurement Methods: Conventional Laboratory Oven versus Halogen Moisture Analyzer,” Journal of Soil and Water Science, vol 4, no 1, Dec 2020, doi: 10.36959/624/440 [69] A I Triftaridou, F Chécot, and I Iliopoulos, “Poly(N,N-dimethylacrylamide)block-poly-(L-lysine) hybrid block copolymers: Synthesis and aqueous solution characterization,” Macromolecular Chemistry and Physics, vol 211, no 7, pp 768– 777, Apr 2010, doi: 10.1002/macp.200900448 [70] A Valdebenito and M V Encinas, “Effect of solvent on the free radical polymerization of N,N-dimethylacrylamide,” Polymer International, vol 59, no 9, pp 1246–1251, Sep 2010, doi: 10.1002/pi.2856 [71] Y Liu et al., “Thio-Michael addition of α,β-unsaturated amides catalyzed by Nmmbased ionic liquids,” RSC Advances, vol 7, no 68, pp 43104–43113, 2017, doi: 10.1039/c7ra08956b [72] R R de Chimie and N Poly, “As Matrix Ensuring Intramolecular Strategies,” vol 58, pp 129–136, 2013 [73] M Eid, M A Abdel-Ghaffar, and A M Dessouki, “Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation,” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, vol 267, no 1, pp 91–98, Jan 2009, doi: 10.1016/j.nimb.2008.11.011 [74] A Avşar, Y Gökbulut, B Ay, and S Serin, “A novel catalyst system for the synthesis of N,N′-methylenebisacrylamide from acrylamide,” Designed Monomers and Polymers, vol 20, no 1, pp 434–440, 2017, doi: 10.1080/15685551.2017.1332138 [75] S A Kareem et al., “Synthesis and characterization of slow-release fertilizer hydrogel based on hydroxy propyl methyl cellulose, polyvinyl alcohol, glycerol and blended paper,” Gels, vol 7, no 4, Dec 2021, doi: 10.3390/gels7040262 98 [76] James Ashenhurst, “Carboxylic Acid Derivatives,” Oct 07, 2019 https://www.masterorganicchemistry.com/2019/10/07/amide-hydrolysis/ (accessed Jul 20, 2022) [77] D Zahn, “Theoretical study of the mechanisms of acid-catalyzed amide hydrolysis in aqueous solution,” Journal of Physical Chemistry B, vol 107, no 44, pp 12303– 12306, Nov 2003, doi: 10.1021/jp034175h [78] V Theodorou, G Paraskevopoulos, and K Skobridis, “A mild alkaline hydrolysis of N- and N,N-substituted amides and nitriles,” Arkivoc, vol 2015, no 7, pp 101–112, Sep 2015, doi: 10.3998/ark.5550190.p009.205 [79] B Galabov, D Cheshmedzhieva, S Ilieva, and B Hadjieva, “Computational study of the reactivity of n-phenylacetamides in the alkaline hydrolysis reaction,” Journal of Physical Chemistry A, vol 108, no 51, pp 11457–11462, Dec 2004, doi: 10.1021/jp046199 [80] D Zahn, “On the role of water in amide hydrolysis,” European Journal of Organic Chemistry, no 19, pp 4020–4023, Sep 2004, doi: 10.1002/ejoc.200400316 [81] “Up-Scalable Synthesis of High Porous Superabsorbent Polymer via Alkaline Hydrolysis of Acrylamide using Microwave Irradiation: Application in Agriculture (Oujda(Morocco”, doi: 10.26872/jmes.2018.9.3.106 [82] S Bennour and F Louzri, “ Study of Swelling Properties and Thermal Behavior of Poly(N,N-Dimethylacrylamide- co -Maleic Acid) Based Hydrogels ,” Advances in Chemistry, vol 2014, pp 1–10, Jul 2014, doi: 10.1155/2014/147398 [83] W Wei et al., “Smart Macroporous Salecan/Poly(N,N-diethylacrylamide) Semi-IPN Hydrogel for Anti-Inflammatory Drug Delivery,” ACS Biomaterials Science and Engineering, vol 2, no 8, pp 1386–1394, Aug 2016, doi: 10.1021/acsbiomaterials.6b00318 [84] X Hu et al., “Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate),” Carbohydrate Polymers, vol 105, no 1, pp 135–144, May 2014, doi: 10.1016/j.carbpol.2014.01.051 [85] S K Bajpai, “Swelling-Deswelling Behavior of Poly(acrylamide-co-maleic acid) Hydrogels,” 2001 [86] M Padmaa Paarakh, P Ani Jose, C M Setty, and G V P Christoper, “RELEASE KINETICS-CONCEPTS AND APPLICATIONS.” [87] Z Zhang, M R Tomlinson, R Golestanian, and M Geoghegan, “The interfacial behaviour of single poly( N , N -dimethylacrylamide) chains as a function of pH,” Nanotechnology, vol 19, no 3, p 035505, Jan 2008, doi: 10.1088/09574484/19/03/035505 [88] G Rezanejade Bardajee, A Pourjavadi, and R Soleyman, “Novel highly swelling nanoporous hydrogel based on polysaccharide/protein hybrid backbone,” Journal of Polymer Research, vol 18, no 3, pp 337–346, May 2011, doi: 10.1007/s10965-0109423-3 [89] M Świtała-Zeliazkow, “Thermal degradation of copolymers of styrene with dicarboxylic acids - II: Copolymers obtained by radical copolymerisation of styrene 99 [90] [91] [92] [93] [94] [95] [96] with maleic acid or fumaric acid,” Polymer Degradation and Stability, vol 91, no 6, pp 1233–1239, Jun 2006, doi: 10.1016/j.polymdegradstab.2005.09.006 R Mahon, Y Balogun, G Oluyemi, and J Njuguna, “Swelling performance of sodium polyacrylate and poly(acrylamide-co-acrylic acid) potassium salt,” SN Applied Sciences, vol 2, no 1, Jan 2020, doi: 10.1007/s42452-019-1874-5 S P Rwei, H N A Tuan, W Y Chiang, and T F Way, “Synthesis and characterization of pH and thermo dual-responsive hydrogels with a semi-IPN structure based on N-isopropylacrylamide and itaconamic acid,” Materials, vol 11, no 5, Apr 2018, doi: 10.3390/ma11050696 Q Li, J Gong, and J Zhang, “Rheological properties and microstructures of hydroxyethyl Cellulose/Poly(Acrylic Acid) blend hydrogels,” Journal of Macromolecular Science, Part B: Physics, vol 54, no 9, pp 1132–1143, Sep 2015, doi: 10.1080/00222348.2015.1077300 X Hu et al., “Synthesis and characterization of a novel hydrogel: Salecan/polyacrylamide semi-IPN hydrogel with a desirable pore structure,” Journal of Materials Chemistry B, vol 2, no 23, pp 3646–3658, Jun 2014, doi: 10.1039/c3tb21711f X Hu et al., “Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate),” Carbohydrate Polymers, vol 105, no 1, pp 135–144, May 2014, doi: 10.1016/j.carbpol.2014.01.051 Y H Magdy and A A M Daifullah, “Adsorption of a basic dye from aqueous solutions onto sugar-industry-mud in two modes of operations,” Waste Management, vol 18, no 4, pp 219–226, Jul 1998, doi: 10.1016/S0956-053X(98)00022-1 M A Ahsan et al., “Biomass conversion of saw dust to a functionalized carbonaceous material for the removal of Tetracycline, Sulfamethoxazole and Bisphenol A from water,” 2018 [Online] Available: http://www.elsevier.com/openaccess/userlicense/1.0/ 100 S K L 0

Ngày đăng: 10/05/2023, 06:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w