1. Trang chủ
  2. » Luận Văn - Báo Cáo

(Luận Văn Thạc Sĩ) Điểm Bất Động Chung Đối Với Các Ánh Xạ Dãn Trong Không Gian B-Metric Và Không Gian B-Metric Nón.pdf

41 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

M�C L�C ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM NGUYỄN ĐỨC THẮNG ĐIỂM BẤT ĐỘNG CHUNG ĐỐI VỚI CÁC ÁNH XẠ DÃN TRONG KHÔNG GIAN b METRIC VÀ KHÔNG GIAN b METRIC NÓN Ngành Toán giải tích Mã số 8460102 L[.]

ĐẠI HỌC THÁI NGUYÊN TRƢỜNG ĐẠI HỌC SƢ PHẠM NGUYỄN ĐỨC THẮNG ĐIỂM BẤT ĐỘNG CHUNG ĐỐI VỚI CÁC ÁNH XẠ DÃN TRONG KHÔNG GIAN b-METRIC VÀ KHÔNG GIAN b-METRIC NĨN Ngành: Tốn giải tích Mã số: 8460102 LUẬN VĂN THẠC SĨ TOÁN HỌC Cán hướng dẫn khoa học: PGS.TS Phạm Hiến Bằng THÁI NGUYÊN - 2020 LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu riêng hướng dẫn PGS.TS Phạm Hiến Bằng Các tài liệu luận văn trung thực Các kết luận văn chưa công bố luận văn Thạc sĩ tác giả khác Tôi xin cam đoan giúp đỡ cho việc thực Luận văn cảm ơn thơng tin trích dẫn Luận văn rõ nguồn gốc Tác giả Nguyễn Đức Thắng i LỜI CẢM ƠN Bản luận văn hoàn thành Trường Đại học Sư phạm - Đại học Thái Nguyên hướng dẫn PGS.TS Phạm Hiến Bằng Nhân dịp xin cám ơn Thầy hướng dẫn hiệu kinh nghiệm trình học tập, nghiên cứu hoàn thành luận văn Xin chân thành cảm ơn Phòng Đào tạo- Bộ phận Sau Đại học, Ban chủ nhiệm Khoa Tốn, thầy giáo Trường Đại học Sư phạm - Đại học Thái Nguyên, Viện Toán học Trường Đại học Sư phạm Hà Nội giảng dạy tạo điều kiện thuận lợi cho trình học tập nghiên cứu khoa học Bản luận văn chắn không tránh khỏi khiếm khuyết mong nhận đóng góp ý kiến thầy cô giáo bạn học viên để luận văn hoàn chỉnh Cuối xin cảm ơn gia đình bạn bè động viên, khích lệ tơi thời gian học tập, nghiên cứu hoàn thành luận văn Tháng 04 năm 2020 Tác giả ii MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii MỤC LỤC iii MỞ ĐẦU Chƣơng KIẾN THỨC CHUẨN BỊ 1.1 Không gian b metric 1.2 Điều kiện T thác triển 1.3 Khơng gian b metric nón Chƣơng ĐIỂM BẤT ĐỘNG CHUNG ĐỐI VỚI CÁC ÁNH XẠ DÃN TRONG KHÔNG GIAN b METRIC VÀ KHÔNG GIAN b METRIC NÓN 2.1 Điểm bất động chung ánh xạ dãn không gian b metric 2.2 Điểm bất động điều kiện T thác triển không gian b metric 2.3 Điểm bất động chung ánh xạ dãn khơng gian b metric nón 2.4 Điểm bất động điều kiện T thác triển cho ánh xạ dãn khơng gian b metric nón 16 16 22 25 32 KẾT LUẬN 36 TÀI LIỆU THAM KHẢO 37 iii MỞ ĐẦU Lý chọn đề tài Năm 1922, Banach chứng minh định lý tiếng điểm bất động không gian metric, gọi nguyên lý ánh xạ co Banach, từ thiết lập tồn nghiệm phương trình tốn tử Tx  x Đã có nhiều mở rộng nguyên lý ánh xạ co Banach điểm bất động Sự mở rộng thiết lập cho nhiều loại ánh xạ khác không gian kiểu metric Năm 2007, Huang Zhang giới thiệu khơng gian metric nón chứng minh định lí điểm bất động ánh xạ co khơng gian Năm 2012, Stanic, Cvetkovic, Simic Dimitrijevic đạt số kết điểm bất động chung điều kiện co kiểu Ciric không gian metric nón, Tương tự, năm 1989, Bakhtin giới thiệu không gian b  metric, mở rộng khác không gian metric Năm 1993, Czerwik mở rộng định lý điểm bất động Banach không gian b  metric Khơng gian b  metric nón mở rộng khơng gian metric nón không gian b  metric Việc nghiên cứu ánh xạ giãn lĩnh vực nghiên cứu thú vị lý thuyết điểm bất động Điều phát triển vào năm 1984 từ cơng trình Wang, Li, Gao Iseki cách giới thiệu khái niệm ánh xạ dãn không gian metric đầy đủ Daffer Kaneko sử dụng hai tự ánh xạ không gian metric đầy đủ, để tổng quát kết Wang cộng Kể từ đó, định lý điểm bất động điểm bất động chung nhiều tác giả chứng minh cho ánh xạ giãn không gian khác nhau, chẳng hạn: không gian G-metric, không gian d  metric, không gian b  metric, không gian b  metric riêng, khơng gian metric nón, khơng gian b  metric nón, … Một số kết không gian b  metric nón sử dụng ánh xạ kiểu giãn thiết lập Huang, Zhu Xi-Wen vào năm 2012 Gần đây, năm 2016, P.K Verma thiết lập số kết điểm bất động chung ánh xạ giãn không gian b  metric nón Theo hướng nghiên cứu này, chúng tơi chọn đề tài: “Điểm bất động chung ánh xạ giãn không gian b  metric không gian b  metric nón” Ý nghĩa thời sự: Đề tài có ý nghĩa thời sự, nhiều nhà tốn học ngồi nước quan tâm nghiên cứu Mục đích nhiệm vụ nghiên cứu Mục đích luận văn nghiên cứu trình bày số kết Điểm bất động chung ánh xạ giãn không gian b  metric khơng gian b  metric nón Phương pháp nghiên cứu Sử dụng phương pháp giải tích hàm Bố cục luận văn Nội dung đề tài viết dựa tài liệu [8] [9] gồm 37 trang, có phần mở đầu, hai chương nội dung, phần kết luận danh mục tài liệu tham khảo Chương 1: Trình bày số khái niệm tính chất khơng gian b  metric không gian b  metric nón Chương 2: Là nội dung đề tài, trình bày số kết điểm bất động chung ánh xạ giãn không gian b  metric khơng gian b  metric nón Cuối phần kết luận trình bày tóm tắt kết đạt CHƯƠNG KIẾN THỨC CHUẨN BỊ 1.1 Không gian b  metric Định nghĩa 1.1.1 Cho E tập khác rỗng k  số thực cho trước Hàm số  : E  E  [0, ) gọi b  metric với u, v, w  E điều kiện sau thỏa mãn: a ) (u, v )   u  v ; b ) (u, v )  (v, u ) ; c ) (u, v )  k (u, w )  (w, v ) Bộ ba (E , , k ) gọi không gian b  metric với hệ số k  Ví dụ 1.1.2 Mỗi không gian metric không gian b  metric với k  , ngược lại không Ví dụ lấy E    : E  E  [0, ) ánh xạ xác định (u, v )  | u  v |2 với u, v  E Khi (E , , k ) không gian b  metric với hệ số k  Nhưng (E , ) khơng phải khơng gian metric Ví dụ 1.1.3 Cho E  {  1, 0,1} d : E  E  [0, ) ánh xạ xác định (u, v )  (v, u ) với u, v  E , (u, u)  0, u  E , (1, 0)  3, (1,1)  (0,1)  Khi (E, , k ) không gian b  metric với k  , khơng khơng gian metric bất đẳng thức tam giác không thỏa mãn Thật vậy, ta có (1,1)  (1, 0)      (1, 0) Định nghĩa 1.1.4 Cho (E , ) không gian b  metric, u  E {un } dãy E Khi (i ) {un } hội tụ đến u lim (un , u)  n  Kí hiệu lim un  u un  u n   n  (ii ) {un } dãy Cauchy lim (un , um )  n ,m  (iii ) (E , ) đầy đủ dãy Cauchy E hội tụ Định nghĩa 1.1.5.Cho (E , ) không gian b  metric ánh xạ T : E  E Ta nói T liên tục u0  E với dãy {un } E , un  u0 n   Tun  Tu0 n   Nếu T liên tục điểm u0  E ta nói T liên tục E Mệnh đề 1.1.6 Cho (E, , k ) không gian b  metric, giả sử {un } {vn } dãy hội tụ đến u, v  E tương ứng Khi (u, v )  lim inf (un , )  lim sup (un , )  k 2(u, v ) n  n  k Đặc biệt, u  v lim (un , )  Ngồi ra, với w  E , ta có n  (u, w )  lim inf (un , w )  lim sup (un , w )  k (u, w ) n  n  k Bổ đề 1.1.7 Cho (E, , k ) không gian b  metric với hệ số k {un } dãy E cho un  u un  v Khi u  v Chứng minh Giả sử (u, v )    Khi theo giả thiết un  u un  v nên n cho với n  n (un , u )    (un , v )  Suy 2k 2k    (u, v )  k ((u, un )  (un , v ))  k       2k 2k  với n  n Điều mâu thuẫn với (u, v )    Bổ đề 1.1.8 Cho (E, , k ) không gian b  metric với hệ số k {uk }kn0  E Khi (u n , u )  k (u , u )    k n 1(u n 2 , u n 1 )  k n 1(u n 1, u n ) Chứng minh Ta có (un , u )  k [ (u 0, u1 )  (u1, u )]  k (u 0, u1 )  k (u1, un )  k (u0, u1 )  k 2[(u1, u2 )  (u2 , un )]  k (u0, u1 )  k 2(u1, u2 )  k 2(u2, un ) …  k (u0, u1 )    k n 1(un 2, un 1 )  k n 1(un 1, un ) Bổ đề 1.1.9 Cho {un } dãy không gian b  metric (E, , k ) với hệ số k  cho  (u n , u n  )   (u n 1, u n ) với n      / k Khi {un } dãy Cauchy (E , , k ) Chứng minh Cho m, n   m  n Áp dụng bất đẳng thức kiểu tam giác vào ba {um , um 1, un },{um 1, um 2, un }, ,{un 2, un 1, un } ta có (um , un )  k ((um , um 1 )  (um 1, un ))  k (um , um 1 )  k ((m 1, um 2 )  (um 2, un ))   k (um , um 1)  k 2(um 1, um 2 )  k n m 1((un 2, un 1 )  (un 1, un ))  k (um , um 1 )  k 2(um 1, um 2 )  k n m 1(un 2, un 1 )  k n m (un 1, un ) Bây từ  (u n , u n  )   (u n 1, u n ) k  suy (um , un )  (k m  k 2m 1   k n mn 1 )(u0, u1 )  km (1  (k)   (k)n m 1 )(u0, u1 ) km  (u0 , u1 )  m    k Vậy {un } dãy Cauchy  Năm 2016, Daheriya, Likhitker Ughade ([2]) chứng minh định lý sau điểm bất động ánh xạ với điều kiện kiểu giãn cho không gian b  metric: Định lý 1.1.10 ([2]) Cho (E, , k ) không gian b  metric đầy đủ với hệ số k  T ánh xạ liên tục thỏa mãn điều kiện:  Tu,Tv   (u,Tu ) 1  (v,Tv )  (u, v )  (u, v ) , với u, v  E , u  v ; ,   số thực với k     k   Khi T có điểm bất động E Kết sau chứng minh Mohanta (Th.3.3 [5]) ánh xạ liên tục không gian b  metric: Định lý 1.1.11 [5] Cho (E, , k ) không gian b  metric với hệ số k  T : E  E ánh xạ liên tục thỏa mãn điều kiện sau: (Tu,Tv )  .max (u,Tv ), (v,Tu )  .(u,Tv ) 1  (v,Tv )  (u, v )  (u, v ) với u, v  E , u  v ,trong , ,   , k     (1  )k  k 2 ,     Khi T có điểm bất động E Định nghĩa 1.1.12 Cho S T ánh xạ từ không gian metric (E , ) vào Cặp ánh xạ (S ,T ) gọi tương thích lim n  (STun ,TSun )  , với dãy {un }  E cho

Ngày đăng: 14/04/2023, 10:03

Xem thêm:

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN