Bsi bs en 01264 2 2008 + a1 2012 (2013)

48 0 0
Bsi bs en 01264 2 2008 + a1 2012 (2013)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BRITISH STANDARD Water based surface embedded heating and cooling systems Part 2: Floor heating: Prove methods for the determination of the thermal output using calculation and test methods ICS 91.140.10 NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW BS EN BS EN 1264-2:2008 1264-2:2008 +A1:2012 BS EN 1264-2:2008+A1:2012 BS EN 1264-2:2008 National foreword This British Standard is the UK implementation of EN 1264-2:2008+A1:2012 It supersedes BS EN 1264-2:2008, which is withdrawn National foreword The start and finish of text introduced or altered by amendment is indicated in the text by tags Tags indicating changes to CEN text carry the number of ThisCEN British Standard For is the UK implementation ofCEN EN 1264-2:2008 the amendment example, text altered by amendment It A1 is indicated byBS  supersedes EN 1264-2:1998 which is withdrawn The UK participation in its preparation was entrusted to Technical Committee RHE/6, Air or space heaters or coolers without combustion A list of organizations represented on this committee can be obtained on request to its secretary This publication does not purport to include all the necessary provisions of a contract Users are responsible for its correct application Compliance with a British Standard cannot confer immunity from legal obligations This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31This MayBritish 2009 Standard was published under the authority of the Standards and Strategy ©Policy The British Standards Committee on 31 May Institution 2013 Published by BSI Standards 2009 Limited 2013 © BSI 2009 ISBN 978 580 77212 ISBN 978 580 57997 Amendments/corrigenda issued issued since since publication publication Amendments/corrigenda Date Comments Date Comments 28 February 2013 Implementation of CEN amendment A1:2012 EUROPEAN STANDARD EN 1264-2:2008+A1 NORME EUROPÉENNE EUROPÄISCHE NORM November 2012 ICS 91.140.10 Supersedes EN 1264-2:2008 English Version Water based surface embedded heating and cooling systems Part 2: Floor heating: Prove methods for the determination of the thermal output using calculation and test methods Systèmes de surfaces chauffantes et rafrchissantes hydrauliques intégrées - Partie : Chauffage par le sol: Méthodes de démonstration pour la détermination de l'émission thermique utilisant des méthodes par le calcul et l'aide de méthodes d'essai Raumflächenintegrierte Heiz- und Kühlsysteme mit Wasserdurchströmung - Teil 2: Fußbodenheizung: Prüfverfahren für die Bestimmung der Wärmeleistung unter Benutzung von Berechnungsmethoden und experimentellen Methoden This European Standard was approved by CEN on 13 September 2008 and includes Amendment approved by CEN on October 2012 CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN-CENELEC Management Centre or to any CEN member This European Standard exists in three official versions (English, French, German) A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN-CENELEC Management Centre has the same status as the official versions CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United Kingdom EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG Management Centre: Avenue Marnix 17, B-1000 Brussels © 2012 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members Ref No EN 1264-2:2008+A1:2012: E BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN Contents Page Foreword 3 Introduction .4 1 Scope 5 2 Normative references 5 3 Definitions and symbols .5 4 Thermal boundary conditions 5 5 Documents for testing 6 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Calculation of the specific thermal output (characteristic curves and limit curves) 7 General approach (see [2], [4]) 7 Systems with pipes installed inside the screed (type A and type C) .8 Systems with pipes installed below the screed or timber floor (type B) .9 Systems with surface elements (plane section systems, type D) 11 Limits of the specific thermal output 11 Influence of pipe material, pipe wall thickness and pipe sheathing on the specific thermal output 13 Heat conductivity of screed with inserts 14 7 Heat conductivity of the materials 14 8 Downward heat loss 14 9 Test procedure for the determination of the thermal output of systems that cannot be calculated in accordance with Clause 15 10 Test procedure for the determination of the effective thermal resistance of carpets 18  11 Prove report 19 12 12.1 12.2 12.3 12.4 Prove system 20 General 20 Master samples 20 Verification of test equipments 21 Determination of the values sm and φM,s (qN,M,s, qG,M,s(Rλ;B=0,15), Rλ,B,M,s) of primary master samples 21 Verification of software 21 12.5 Annex A (normative) Figures and tables 23 Annex B (informative) Test procedure for the determination of parameters for application in EN 15377-1:2008 Annex C 40 Annex C (informative) !Influence of the heat exchange coefficient inside the pipe on the specific thermal output" " 43 Bibliography 44 BS EN 1264-2:2008+A1:2012 EN EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) Foreword This document (EN 1264-2:2008+A1:2012) has been prepared by Technical Committee CEN/TC 130 “Space heating appliances without integral heat sources”, the secretariat of which is held by UNI This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by May 2013, and conflicting national standards shall be withdrawn at the latest by May 2013 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights This document includes Amendment approved by CEN on October 2012 This document !supersedes EN 1264-2:2008" The start and finish of text introduced or altered by amendment is indicated in the text by tags ! " This European Standard, Water based surface embedded heating and cooling systems, consists of the following parts:  Part 1: Definitions and symbols;  Part 2: Floor heating: Prove methods for the determination of the thermal output using calculation and test methods;  Part 3: Dimensioning;  Part 4: Installation;  Part 5: Heating and cooling surfaces embedded in floors, ceilings and walls — Determination of the thermal output According to the CEN/CENELEC Internal Regulations, the national standards organisations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN Introduction This European Standard is based on the realisation that in the field of commercial trade, the thermal output of heating and cooling systems represents the basis of rating In order to be able to evaluate and compare different heating and/or cooling systems, it is, therefore, necessary to refer to values determined using one single, unambiguously defined method The basis for doing so are the prove methods for the determination of the thermal output of floor heating systems specified in Part of this European Standard In analogy to the European Standard EN 442-2 (Radiators and convectors — Part 2: Test methods and rating), these prove methods provide characteristic partial load curves under defined boundary conditions as well as the characteristic output of the system represented by the standard thermal output together with the associated standard temperature difference between the heating medium and the room temperature BS EN 1264-2:2008+A1:2012 EN EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) Scope This European Standard specifies the boundary conditions and the prove methods for the determination of the thermal output of hot water floor heating systems as a function of the temperature difference between the heating medium and the room temperature This standard shall be applied to commercial trade and practical engineering if proved and certifiable values of the thermal output shall be used This European Standard applies to heating and cooling systems embedded into the enclosure surfaces of the room to be heated or to be cooled This Part of this European Standard applies to hot water floor heating systems Applying of Part of this European Standard requires the prior use of this Part of this European Standard Part of this European Standard deals with the conversion of the thermal output of floor heating systems determined in Part into the thermal output of heating surfaces embedded in walls and ceilings as well as into the thermal output of cooling surfaces embedded in floors, walls and ceilings The thermal output is proved by a calculation method (Clause 6) and by a test method (Clause 9) The calculation method is applicable to systems corresponding to the definitions in EN 1264-1 (type A, type B, type C, type D) For systems not corresponding to these definitions, the test method shall be used The calculation method and the test method are consistent with each other and provide correlating and adequate prove results The prove results, expressed depending on further parameters, are the standard specific thermal output and the associated standard temperature difference between the heating medium and the room temperature as well as fields of characteristic curves showing the relationship between the specific thermal output and the temperature difference between the heating medium and the room Normative references !The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application For dated references, only the edition cited applies For undated references, the latest edition of the referenced document (including any amendments) applies EN 1264-1:2011, Water based surface embedded heating and cooling systems  Part 1: Definitions and symbols EN 1264-3:2009, Water based surface embedded heating and cooling systems  Part 3: Dimensioning" Definitions and symbols For the purposes of this document, the terms and definitions given in !EN 1264-1:2011" apply Thermal boundary conditions A floor heating surface with a given average surface temperature exchanges the same thermal output in any room with the same indoor room temperature (standard indoor room temperature ϑi) It is, therefore, possible to give a basic characteristic curve of the relationship between specific thermal output and average surface temperature that is independent of the heating system and applicable to all floor heating surfaces (including those having peripheral areas with greater heat emissions) (see Figure A.1) In contrast, every floor heating system has its own maximum permissible specific thermal output, the limit specific thermal output, qG This output is calculated for an ambient (standard) indoor room temperature BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN ϑi = 20 °C The other condition is the maximum surface temperature ϑF, max = 29 °C1) at temperature drop between supply and return of the heating medium σ = K The maximum specific thermal output for the peripheral area will be achieved at a maximum surface temperature ϑF, max = 35 °C2) and σ = K For the calculation and for the test procedure, the centre of the heating surface is used as the reference point for ϑF, max, regardless of system type The average surface temperature ϑF, m, determining the specific thermal output (see basic characteristic curve) is linked with the maximum surface temperature In this context, ϑF, m < ϑF, max always applies The achievable value ϑF, m depends on both the floor heating system and the operating conditions (temperature drop σ = ϑV – ϑR, downward thermal output qu and heat resistance of the floor covering Rλ, B) The calculation of the specific thermal output is based on the following conditions:  The heat transfer at the floor surface occurs in accordance with the basic characteristic curve  The temperature drop of the heating medium σ = 0; the extent to which the characteristic curve depends on the temperature drop, is covered by using the logarithmically determined temperature difference between the heating medium and the room ∆ϑH [3] (see Equation (1))  Turbulent pipe flow: mH/di > 000 kg/(h ⋅ m)  There is no lateral heat flow  The heat-conducting layer of the floor heating system is thermally decoupled by thermal insulation from the structural base of the building NOTE The aforementioned last condition does not concern the test procedure of Clause Documents for testing The system supplier's documents are taken as the basis for the determination of the thermal output The following documents shall be provided:  Installation drawing (section) of the floor heating system, covering two pipe spacing, including the peripheral area and giving information on the materials used (if necessary, the test results regarding the heat conductivity values of the materials shall be provided)  Technical documentation of the system This information shall contain any details necessary for the calculation of the construction customary on site It shall be submitted to the installer in the same form With a member of the testing body present, a demonstration surface of approximately m × m is constructed to represent the actual construction used on site 1) National regulations may limit this temperature to a lower value 2) Some floor covering materials may require lower temperatures BS EN 1264-2:2008+A1:2012 EN EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) Calculation of the specific thermal output (characteristic curves and limit curves) 6.1 General approach (see [2], [4]) The specific thermal output q at the surface of a floor is determined by the following parameters:  Pipe spacing T;  Thickness su and heat conductivity λE of the layer above the pipe;  Heat conduction resistance Rλ, B of the floor covering;  Pipe external diameter D = da, including the sheathing (D = dM) if necessary and the heat conductivity of the pipe λR or the sheathing λM In case of pipes having non-circular cross sections, the equivalent diameter of a circular pipe having the same circumference shall be used in the calculation (the screed covering shall not be changed) Thickness and heat conductivity of permanently mounted diffusion barrier layers with a thickness up to 0,3 mm need not be considered in the calculation In this case, D = da shall be used;  Heat diffusion devices having the characteristic value KWL in accordance with 6.3;  Contact between the pipes and the heat diffusion devices or the screed, characterised by the factor aK The specific thermal output is proportional to (∆ϑH)n, where the temperature difference between the heating medium and the room temperature is: ∆ϑH = ϑV − ϑR ϑ − ϑi ln V ϑ R − ϑi (1) and where experimental and theoretical investigations of the exponent n have shown that: 1,0 < n < 1,05 (2) Within the limits of the achievable accuracy, n=1 is used The specific thermal output is calculated using Equation (3) m q = B ⋅ Π( a i i ) ⋅ ∆ϑH i (3) where is a system-dependent coefficient, in W/(m2 ⋅ K); B m Π( a i i ) i is a power product linking the parameters of the floor construction with one another (see 6.2, 6.3 and 6.4) BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN A distinction shall be made between systems, where the pipes are installed inside or below the screed or wood floors, and systems with surface elements (plane section systems) For usual constructions, Equation (3) applies directly For systems with additional devices for heat distribution, for air filled hollow sections or for other components influencing the heat distribution, the thermal output is determined experimentally in accordance with Clause 6.2 Systems with pipes installed inside the screed (type A and type C) For these systems (see Figure A.2), the characteristic curves are calculated in accordance with Equation (4a) m m q = B ⋅ aB ⋅ a T T ⋅ a umu ⋅ a D D ⋅ ∆ϑH (4a) The power product given before the temperature difference ∆ϑH is called the equivalent heat transmission coefficient KH, which leads to the following abbreviated form of the expression: q = KH ⋅ ∆ϑH (4b) where B = B0 = 6,7 W/(m2 ⋅ K) for a pipe heat conductivity λR = λR, = 0,35 W/(m2 ⋅ K) and a pipe wall thickness sR = sR, = (da – di)/2 = 0,002 m For other materials with different heat conductivities or for different pipe wall thicknesses, or for sheathed pipes, B shall be calculated in accordance with 6.6 For a heating screed with reduced moisture addition, λE = 1,2 W/(m2 ⋅ K) shall be used This value is also applicable to heating screeds If a different value is used, its validity shall be checked aB is the floor covering factor in accordance with the following equation: aB = α α + + s u, λ u, s u, λE + R λ, B where α = 10,8 W/(m2 ⋅ K); λu, = W/(m ⋅ K); su, = 0,045 m; Rλ, B is the heat conduction resistance of the floor covering, in m2 ⋅ K/W; λE is the heat conductivity of the screed, in W/(m ⋅ K); aT is a spacing factor in accordance with Table A.1; aT = f (Rλ, B); au is a covering factor in accordance with Table A.2; au = f (T, Rλ, B); (5) BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN s s Table A.4b — Coefficient BG, depending on the ratio u for u > 0,0792 for systems with pipes T A and λ E type C) installed inside the screed (type su/T BG 0,173 27,5 0,20 40,0 0,25 57,5 0,30 69,5 0,35 78,2 0,40 84,4 0,45 88,3 0,50 91,6 0,55 94,0 0,60 96,3 0,65 98,6 0,70 99,8 > 0,75 100 s s Table A.5a — Exponent nG, depending on the ratio u for u ≤ 0,0792 and on the pipe spacing T for λ Ethe screed λ E (type A and type C) systems with pipes installed inside su/λE m2 ⋅ K/W 0,01 0,020 0,029 0,037 0,045 0,054 0,062 0,070 0,079 T m 32 0,05 0,008 0,005 0,075 0,024 0,021 0,1 0,046 0,043 0,15 0,088 0,2 0,002 0 0 0 0,011 0,002 0 0 0,041 0,033 0,014 0,005 0 0,085 0,082 0,076 0,055 0,038 0,024 0,014 0,006 0,131 0,13 0,129 0,123 0,105 0,083 0,057 0,040 0,028 0,225 0,155 0,154 0,153 0,146 0,13 0,11 0,077 0,056 0,041 0,262 0,197 0,196 0,196 0,19 0,173 0,15 0,110 0,083 0,062 0,3 0,254 0,253 0,253 0,245 0,228 0,195 0,145 0,114 0,086 0,337 0,322 0,321 0,321 0,31 0,293 0,260 0,187 0,148 0,115 0,375 0,422 0,421 0,421 0,405 0,385 0,325 0,230 0,183 0,142 0,018 BS EN 1264-2:2008+A1:2012 EN EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) s s Table A.5b — Exponent nG, depending on the ratio u for u > 0,0792 for systems with pipes T λ E type C) installed inside the screed (type A and su/T nG 0,173 0,320 0,20 0,230 0,25 0,145 0,30 0,097 0,35 0,067 0,40 0,048 0,45 0,033 0,50 0,023 0,55 0,015 0,60 0,009 0,65 0,005 0,70 0,002 > 0,75 Table A.6 — Spacing factor aT for type B systems sU/λE m ·K/W aT 0,01 0,02 0,03 0,04 0,05 0,06 0,08 0,10 0,15 0,18 1,103 1,100 1,097 1,093 1,091 1,088 1,082 1,075 1,064 1,059 Table A.7 — Factor bu, depending on the pipe spacing T for type B systems T (m) bu 0,05 0,075 0,1 0,15 0,2 0,225 0,3 0,375 0,45 1 0,7 0,5 0,43 0,25 0,1 33 BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN Table A.8a — Heat conduction factor aWL, depending on the pipe spacing T, the pipe external diameter D and the characteristic value KWL for type B systems (KWL = 0) D (m) 0,022 0,020 T 0,018 0,016 0,014 aWL (m) 0,05 0,96 0,93 0,9 0,86 0,82 0,075 0,8 0,754 0,7 0,644 0,59 0,1 0,658 0,617 0,576 0,533 0,488 0,15 0,505 0,47 0,444 0,415 0,387 0,2 0,422 0,4 0,379 0,357 0,337 0,225 0,396 0,376 0,357 0,34 0,32 0,3 0,344 0,33 0,315 0,3 0,288 0,375 0,312 0,3 0,29 0,278 0,266 0,45 0,3 0,29 0,28 0,264 0,25 Table A.8b — Heat conduction factor aWL, depending on the pipe spacing T, the pipe external diameter D and the characteristic value KWL for type B systems (KWL = 0,1) D (m) 0,022 0,020 T 0,016 0,014 aWL (m) 34 0,018 0,05 0,975 0,955 0,930 0,905 0,88 0,075 0,859 0,836 0,812 0,776 0,74 0,1 0,77 0,76 0,726 0,693 0,66 0,15 0,642 0,621 0,6 0,58 0,561 0,2 0,57 0,55 0,53 0,51 0,49 0,225 0,54 0,522 0,504 0,485 0,467 0,3 0,472 0,462 0,453 0,444 0,435 0,375 0,46 0,446 0,434 0,421 0,411 0,45 0,45 0,44 0,43 0,42 0,41 BS EN 1264-2:2008+A1:2012 EN EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) Table A.8c — Heat conduction factor aWL, depending on the pipe spacing T, the pipe external diameter D and the characteristic value KWL for type B systems (KWL = 0,2) D (m) 0,022 0,020 T 0,018 0,016 0,014 aWL (m) 0,05 0,985 0,97 0,955 0,937 0,92 0,075 0,902 0,893 0,885 0,865 0,845 0,1 0,855 0,843 0,832 0,821 0,81 0,15 0,775 0,765 0,755 0,745 0,735 0,2 0,71 0,703 0,695 0,688 0,68 0,225 0,685 0,678 0,67 0,663 0,655 0,3 0,615 0,608 0,6 0,592 0,585 0,375 0,58 0,573 0,565 0,558 0,55 0,45 0,57 0,565 0,56 0,555 0,55 Table A.8d — Heat conduction factor aWL, depending on the pipe spacing T, the pipe external diameter D and the characteristic value KWL for type B systems (KWL = 0,3) D (m) 0,022 0,020 T 0,018 0,016 0,014 aWL (m) 0,05 0,99 0,98 0,97 0,96 0,95 0,075 0,94 0,935 0,93 0,925 0,92 0,1 0,92 0,915 0,91 0,905 0,9 0,15 0,855 0,855 0,855 0,855 0,855 0,2 0,8 0,8 0,8 0,8 0,8 0,225 0,79 0,79 0,79 0,79 0,79 0,3 0,72 0,72 0,72 0,72 0,72 0,375 0,69 0,69 0,69 0,69 0,69 0,45 0,68 0,68 0,68 0,68 0,68 35 BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN Table A.8e — Heat conduction factor aWL, depending on the pipe spacing T, the pipe external diameter D and the characteristic value KWL for type B systems (KWL = 0,4) D 0,022 (m) 0,020 0,018 T 0,016 0,014 aWL (m) 0,05 0,995 0,99 0,985 0,978 0,97 0,075 0,96 0,962 0,963 0,964 0,965 0,1 0,94 0,94 0,94 0,94 0,94 0,15 0,895 0,895 0,895 0,895 0,895 0,2 0,86 0,86 0,86 0,86 0,86 0,225 0,84 0,84 0,84 0,84 0,84 0,3 0,78 0,78 0,78 0,78 0,78 0,375 0,76 0,76 0,76 0,76 0,76 0,45 0,75 0,75 0,75 0,75 0,75 Table A.8f — Heat conduction factor aWL, depending on the pipe spacing T and the characteristic value KWL for type B systems (KWL ≥ 0,5 [aWL no longer dependent on D]) KWL 0,5 0,6 0,7 T 0,8 0,9 1,0 ∞ aWL (m) 0,05 0,995 0,998 1 1 0,075 0,979 0,984 0,99 0,995 0,998 1,01 0,1 0,963 0,972 0,98 0,988 0,995 1,02 0,15 0,924 0,945 0,96 0,974 0,99 1,04 0,2 0,894 0,921 0,943 0,961 0,98 1,06 0,225 0,88 0,908 0,934 0,955 0,975 1,07 0,3 0,83 0,87 0,91 0,94 0,97 1,09 0,375 0,815 0,86 0,90 0,93 0,97 1,1 0,45 0,81 0,86 0,90 0,93 0,97 1,1 KWL>1: a WL = [a WL ]KWL = ∞ − ([a WL ]KWL = ∞ 36  [a WL ]KWL = ∞ −  − [a WL ]KWL =0 ) ⋅    [a WL ]KWL = ∞ − [a WL ] KWL =0  KWL BS EN 1264-2:2008+A1:2012 EN EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) Table A.9 — Correction factor aK for the contact in case of type B systems T (m) aK 0,05 0,075 0,1 0,15 0,2 0,225 0,3 0,375 0,45 0,99 0,98 0,95 0,92 0,9 0,82 0,72 0,60 Table A.10 — Coefficient BG, depending on KWL and the pipe spacing T for type B systems T (m) 0,05 0,075 0,1 0,15 KWL 0,2 0,225 0,3 0,375 0,45 BG 0,1 92 86,7 79,4 64,8 50,8 45,8 27,5 9,9 0,2 93,1 88 81,3 67,5 54,2 49 31,8 15,8 2,4 0,3 94,2 89,5 83,3 70,2 57,6 52,5 36 21,3 7,0 0,4 95,4 90,7 85,2 72,9 60,8 56 40,2 25,7 11,9 0,5 96,6 92,1 87,2 75,6 64,1 59,3 44,4 30 16,6 0,6 97,8 93,7 89,2 78,3 67,3 62,6 48,6 34,1 21,1 0,7 98,7 95 91 81 70,6 66,3 52,8 38,5 25,5 0,8 99,3 96,3 93 83,7 74 69,7 57 42,8 29,6 0,9 99,8 97,7 95 86,3 77,2 73 61,2 47 33,6 1,0 100 98,5 96,5 89 80,7 76,6 65,4 51,4 37,3 1,1 100 99,3 97,8 91,5 84 80 69,4 55,6 40,9 1,2 100 99,6 98,5 93,8 87,2 83,3 73,2 59,8 44,3 1,3 100 99,8 99,3 95,8 90 86,3 76,6 63,8 47,5 1,4 100 100 99,8 97,5 92,5 89 80 67,3 50,5 1,5 100 100 100 98,6 94,8 91,7 83 71 53,4 37 BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN Table A.11 — Exponent nG, depending on KWL and the pipe spacing T for type B systems T 0,05 (m) 0,075 0,1 0,15 KWL 0,2 0,225 0,3 0,375 0,45 nG 0,1 0,002 0,017 0,032 0,067 0,122 0,151 0,235 0,333 0,2 0,002 0,015 0,027 0,055 0,097 0,120 0,184 0,288 0,725 0,3 0,002 0,013 0,024 0,048 0,086 0,104 0,169 0,256 0,482 0,4 0,001 0,012 0,022 0,044 0,08 0,095 0,156 0,228 0,38 0,5 0,001 0,011 0,02 0,04 0,074 0,088 0,143 0,204 0,31 0,6 0,001 0,009 0,018 0,037 0,067 0,082 0,131 0,183 0,25 0,7 0,000 0,008 0,016 0,033 0,061 0,074 0,118 0,162 0,21 0,8 0,006 0,007 0,014 0,03 0,055 0,067 0,106 0,144 0,187 0,9 0,000 0,006 0,012 0,027 0,049 0,06 0,095 0,126 0,165 1,0 0,005 0,01 0,024 0,044 0,053 0,083 0,11 0,143 1,1 0,003 0,008 0,021 0,038 0,046 0,072 0,096 0,121 1,2 0,002 0,006 0,018 0,032 0,038 0,063 0,084 0,107 1,3 0,001 0,004 0,015 0,027 0,034 0,054 0,073 0,093 1,4 0 0,002 0,012 0,022 0,029 0,047 0,063 0,080 1,5 0 0,009 0,02 0,025 0,04 0,055 0,070 Table A.12 — Values for qG, max, depending on ϑF, max and ϑi 38 ϑF, max ϑi qG, max (°C) (°C) (W/m2) 29 20 100 occupied area 33 24 100 bathroom and similar 35 20 175 peripheral area BS EN 1264-2:2008+A1:2012 EN EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) Table A.13 — Heat conductivity values of materials for hot water floor heating systems Material Heat conductivity λ W/(m ⋅ K) PB pipe 0,22 PP pipe 0,22 PE-X pipe (HDX, MDX) 0,35 PE-RT 0,35 Steel pipe 52 Copper pipe 390 PVC sheathing with air included 0,15 PVC sheathing with no air included 0,2 Aluminium heat diffusion devices 200 Steel heat diffusion devices 52 Cement screed 1,2 Anhydrite screed 1,2 Concrete (ρ ≈ 400 kg/m3) 1,9 Gypsum plaster boards 0,25 Lime plaster 0,7 Walking surface on industrial floors 0,7 Mastic asphalt screed 0,9 Stone wood 0,4 Timber (wood-chip board) 0,15 39 BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN Annex B (informative) Test procedure for the determination of parameters for application in EN 15377-1:2008 Annex C Introduction In this European Prove Standard, only one calculation method and a corresponding test method are used which are qualified to get proved and certifiable values for the thermal output of water based surface embedded heating and cooling systems Furthermore, in EN 15377-1 additional calculation methods are described EN 15377-1:2008 Annex C presents a calculation method for systems with pipes embedded in wooden construction It works on the basis of the Thermal Resistance Method The relevant thermal resistances shall be determined by test for systems without heat diffusion devices and in the case where higher accuracy shall be reached Due to the fact that EN 15377 does not enclose test methods, this requirement should be taken over in this European standard For the relevant parameters and the respective equations, see EN 15377-1:2008, C.3.1 and C.3.2 Using the formula symbols of this European Standard and those of EN 15377, simultaneous steady state values of the following parameters representing the system are to be provided: ϑH = ϑHC average heating medium temperature ϑi indoor room temperature ϑe = ϑU indoor room temperature of a room under the floor heated room ϑm average Temperature of the heating layer, i.e of the heat diffusion device if it exists q = qi specific thermal output of the floor heating system qU = qe downward specific heat loss qHC total specific heat input to the system, where qHC = q + qU Test equipment and procedure For the test equipment, see Figure B.1 It is essentially identical to the test equipment of Clause 9, see Figure A.6, but extended by a heat flow meter plate (see key in Figure A.6) in accordance with Clause 10 of this European Standard Additionally (in cases where this is possible depending on the material and the 40 BS EN 1264-2:2008+A1:2012 EN EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) structure of the weight-bearing layer 3) measuring sensors can be installed in order to get the average temperature of the heating layer ϑm NOTE Between the heat flow meter plate (key 4) and the cooling plate (key 6) an elastic layer shall be interposed, for instance consisting of PE lather of about mm thickness The test procedure is as follows: Steady state conditions shall be adjusted as described in Clause of this European Standard Operation conditions and accuracy requirements of Clause and Clause 10 of this European Standard are to be satisfied The simulated temperature ϑU (ϑe) is maintained on the same value of ϑi or a lower value depending on the special circumstances The specific thermal output q (qi) is determined as described in Clause of this European Standard This means, the heat exchange resistance on the surface of the heating floor 1/α (RSi, see EN 15377) is included, i.e for the later with EN 15377-1 calculated thermal resistance Ri no further correction is necessary The downward heat loss qU (qe) is determined by the heat flow meter plate Should the situation arise, for the later with EN 15377-2 calculated thermal resistance Re, a correction depending on the heat exchange resistance on the rear side surface may be necessary The measured values of the designated temperatures and specific thermal heat flows allow for the evaluation of the equations of EN 15377-1:2008 Annex C.3.1 and C.3.2 In the case of C.3.2 the values of two independent steady state conditions are needed NOTE It must be underlined that results calculated in this way, not are proved results in terms of this European Standard 3) The temperature sensors also may be installed on the underneath surface of the heat diffusion device 41 BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN Key Cooling plate above Heat transfer layer s/λ = 0,0926 m ·W/K Floor heating system (test sample) 3a Weight bearing layer 3b Pipes and heat diffusion device 3c Thermal insulation Heat flow meter plate (heat flux meter) Temperature measuring sensors Cooling plate on the bottom of the heat flow meter plate q Specific thermal output qU Downward heat loss ϑi Indoor room temperature ϑi a Temperature maintained on ϑU ≤ ϑi ϑU Indoor temperature of a room under the floor heated room ϑF,m Average temperature of the heating surface ϑF,max Maximum temperature of the heating surface ϑH Average heating medium temperature ϑm Average temperature of the heating layer In brackets: !Denominations of EN 15377" Figure B.1 —Test equipment for test of Annex B 42 BS EN 1264-2:2008+A1:2012 EN EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) Annex C (informative) !Influence of the heat exchange coefficient inside the pipe on the specific thermal output Within the range of turbulent tube flows including the transition area, limited alterations of the heat exchange coefficient not require consideration In rare cases of application with laminar tube flow however, a correction shall be performed Given such a case with a laminar heat exchange coefficient αlam, the following expanded version of Formula (25) and Formula (26) respectively (see 6.6) shall be used: ( ) 1 1,1 m = + ⋅Π a i ⋅T π i i B B0   da da 1 ln − ln + −   2λR da − 2sR 2λR,0 da − 2sR,0 αlam (d a − 2sR ) αturb (d a − 2sR,0 )  (25a) ⋅ ( ) 1 1,1 = + ⋅ Π aimi ⋅ T B B0 π i   da d dM 1 1 ln M + ln − ln + −    2λM da 2λR da − 2sR 2λR,0 dM − 2sR,0 α lam (d a − 2s R ) α turb (d M − 2sR,0 )  (26a) In these formulas, αturb=2 200 W/(m²K) and αlam=200 W/(m²K) Both values are average values To characterise if the flow is turbulent ore laminar the Reynolds-equation can be used Re = w ⋅ d /ν Where d is the internal diameter of the pipe, w is the average velocity of the flow and ν is the kinematic viscosity of -7 the water with an average value of 8,0*10 m²/s Laminar flow is recognised if Re < 320 applies." 43 BS EN 1264-2:2008+A1:2012 EN1264-2:2008+A1:2012 1264-2:2008+A1:2012(E) (E) EN Bibliography [1] Konzelmann, M and Zưllner, G.: Wärmetechnische Prüfung von Fbodenheizungen Published in HLH 33 (1982), No 4, pp 136–142 [2] Kast, W., Klan, H and Bohle, J.: Wärmeleistung von Fußbodenheizungen Published in HLH 33 (1986), No 4, pp 175–182 [3] Konzelmann, M and Zöllner, G.: Auslegung und wärmetechnische Prüfung von Warmwasser-Fußbodenheizungen Published in SHT (1984), pp 255–259 [4] Kast, W., Klan, H and Bohle, J.: Wärmeleistung von Fußbodenheizungen, Part Published in HLH 33 (1986), No 10, pp 497–502 [5] EN 442-2, Radiators and convectors — Part 2: Test methods and rating [6] !EN 1264-4", Water based surface embedded heating and cooling systems — Part 4: Installation [7] EN 15377-1:2008, Heating systems in buildings — Design of embedded water based surface heating and cooling systems — Part 1: Determination of the design heating and cooling capacity [8] EN 15377-2:2008, Heating systems in buildings — Design of embedded water based surface heating and cooling systems — Part 2: Design, dimensioning and installation 44 British Standards Institution (BSI) BSI is the independent national body responsible for preparing British Standards and other standards-related publications, information and services It presents the UK view on standards in Europe and at the international level BSI is incorporated by Royal Charter British Standards and other standardization products are published by BSI Standards Limited Revisions Information on standards British Standards and PASs are periodically updated by amendment or revision Users of British Standards and PASs should make sure that they possess the latest amendments or editions It is the constant aim of BSI to improve the quality of our products and services We would be grateful if anyone finding an inaccuracy or ambiguity while using British Standards would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover Similary for PASs, please notify BSI Customer Services Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001 BSI provides a wide range of information on national, European and international standards through its Knowledge Centre BSI offers BSI Subscribing Members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of British Standards and PASs Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com Tel: +44 (0)20 8996 7669 Fax: +44 (0)20 8996 7001 Email: plus@bsigroup.com Information regarding online access to British Standards and PASs via British Standards Online can be found at www.bsigroup.com/BSOL Further information about British Standards is available on the BSI website at www.bsigroup.com/standards Buying standards You may buy PDF and hard copy versions of standards directly using a credit card from the BSI Shop on the website www.bsigroup.com/shop In addition all orders for BSI, international and foreign standards publications can be addressed to BSI Customer Services Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com In response to orders for international standards, BSI will supply the British Standard implementation of the relevant international standard, unless otherwise requested Tel: +44 (0)20 8996 7004 Fax: +44 (0)20 8996 7005 Email: knowledgecentre@bsigroup.com BSI Subscribing Members are kept up to date with standards developments and receive substantial discounts on the purchase price of standards For details of these and other benefits contact Membership Administration Copyright All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that owns copyright in the information used (such as the international standardization bodies) has formally licensed such information to BSI for commercial publication and use Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained Details and advice can be obtained from the Copyright & Licensing Department Tel: +44 (0)20 8996 7070 Email: copyright@bsigroup.com BSI 389 Chiswick High Road London W4 4AL UK Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/standards raising standards worldwide™

Ngày đăng: 13/04/2023, 22:01

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan