1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tiêu chuẩn iso 16890 1 2016

34 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 1,7 MB

Nội dung

INTERNATIONAL STANDARD ISO 6890-1 First edition 2016-12-01 Air filters for general ventilation — Part 1: Technical specifications, requirements and classification system based upon particulate matter efficiency (ePM) Filtres air de ventilation générale — Partie  1:  Spécifications  techniques,  exigences  et  système  de  classification  fondé  sur  l’efficacité  des  particules  en  suspension  (ePM) Reference number ISO 16890-1:2016(E) I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n © ISO 2016 ISO 16890-1:2016(E) COPYRIGHT PROTECTED DOCUMENT © ISO 2016, Published in Switzerland All rights reserved Unless otherwise specified, no part o f this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission Permission can be requested from either ISO at the address below or ISO’s member body in the country o f the requester ISO copyright o ffice Ch de Blandonnet • CP 401 CH-1214 Vernier, Geneva, Switzerland Tel +41 22 749 01 11 Fax +41 22 749 09 47 copyright@iso.org www.iso.org ii I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n ISO 16890-1:2016(E) Contents Page Foreword iv Introduction v Scope Normative references Terms and definitions Symbols and abbreviated terms Technical specifications and requirements 5.1 General 5.2 Material f f 5.6 Arrestance Test methods and procedure Classification system based on particulate matter efficiency (ePM) f f f f ePM) Reporting 10 8.1 General 10 8.2 Interpretation of test reports 11 12 Annex A (informative) Shedding from filters 17 Annex B (informative) Examples 19 Annex C (informative) Estimation o f downstream fine dust concentrations 23 Bibliography 26 N o minal air flow rate Res is tance to air flo w 5 Fractio nal e ficiency curves (p article s ize e ficiency s p ectrum) 7.1 D efinitio n o 7.2 C alculatio n o 7.3 C las s ificatio n 8.3 S ummary © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n a s tandardized p articles s ize dis trib utio n o amb ient air the p articulate matter e ficiencies ( iii ISO 16890-1:2016(E) Foreword I SO (the I nternational O rganiz ation for Standardiz ation) is a worldwide federation of national s tandards bodies (ISO member bodies) The work o f preparing International Standards is normally carried out through ISO technical committees Each member body interested in a subject for which a technical committee has b een es tablished has the right to b e represented on that committee I nternational organi zation s , governmental and non- governmental, in liaison with I SO, al so take p ar t in the work ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters o f elec trotechnical s tandardi z ation T he procedures used to develop this cument and those intended for its fur ther maintenance are describ ed in the I SO/I E C D irec tives , Par t I n p ar ticu lar the different approval criteria needed for the di fferent types o f ISO documents should be noted This document was dra fted in accordance with the editorial ru les of the I SO/I E C D irec tives , Par t (see www iso org/direc tives) Attention is drawn to the possibility that some o f the elements o f this document may be the subject o f patent rights ISO shall not be held responsible for identi fying any or all such patent rights Details o f any patent rights identified during the development o f the document will be in the Introduction and/or on the I SO l is t of p atent declarations received (see www iso org/p atents) Any trade name used in this document is in formation given for the convenience o f users and does not cons titute an endors ement For an explanation on the meaning o f ISO specific terms and expressions related to formity assessment, as well as information about I SO ’s adherence to the World Trade O rganization ( WTO) principles in the Technical B arriers to Trade (TB T ) see the following URL: www.iso.org/iso/foreword html T he committee res p ons ible for this cument is I SO/ TC 142 , Cleaning  equipment  for  air  and  other  gases This first edition o f ISO 16890-1, together with ISO 16890-2, ISO 16890-3 and ISO 16890-4, cancels and replaces ISO/TS 21220:2009, which has been technically revised I SO 16 cons is ts of the fol lowing p ar ts , under the general title — — — — iv Air  filters  for  general  ventilation : Part  1:  Technical  specifications,  requirements  and  classification  system  based  upon  particulate  matter  efficiency  (ePM) Part  2:  Measurement  o f  fractional  efficiency  and  air  flow  resistance Part  3:  Determination  o f  the  gravimetric  efficiency  and  the  air  flow  resistance  versus  the  mass  o f  test  dust  captured Part  4:  Conditioning  method  to  determine  the  minimum  fractional  test  efficiency I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n ISO 6890-1 : 01 6(E) Introduction The e ffects o f particulate matter (PM) on human health have been extensively studied in the past decades The results are that fine dust can be a serious health hazard, contributing to or even causing respiratory and cardiovascular diseases Di fferent classes o f particulate matter can be defined according to the particle size range The most important ones are PM10 , PM 2,5 and PM1 The U.S Environmental Protection Agency (EPA), the World Health Organization (WHO) and the European Union define PM10 as particulate matter which passes through a size-selective inlet with a 50 % efficiency cut-off at 10 µm aerodynamic diameter PM 2,5 and PM are similarly defined However, this definition is not precise if there is no further characterization of the sampling method and the sampling inlet with a clearly defined separation curve In Europe, the re ference method for the sampling and measurement of PM10 is described in EN 12341 The measurement principle is based on the collection on a filter of the PM10 fraction of ambient particulate matter and the gravimetric mass determination (see EU Council Directive 1999/30/EC of 22 April 1999) As the precise definition o f PM10 , PM 2,5 and PM1 is quite complex and not simple to measure, public authorities, like the U.S EPA or the German Federal Environmental Agency (Umweltbundesamt), increasingly use in their publications the more simple denotation o f PM10 as being the particle size raction less or equal to 10 µm Since this deviation to the above mentioned complex “o fficial” definition does not have a significant impact on a filter element’s particle removal e fficiency, the ISO 16890 series re fers to this simplified definition o f PM10 , PM 2,5 and PM1 f Particulate matter in the context of the ISO 16890 series describes a size fraction of the natural aerosol cleaning device to particles with an optical diameter between 0,3 µm and x µm The following particle (liquid and solid particles) suspended in ambient air The symbol ePM x describes the e fficiency o f an air size ranges are used in the ISO 16890 series for the listed e fficiency values Table — O ptical particle diameter size ranges E fficiency PM10 ePM 2,5 e PM e for the definition o f the e fficiencies Size range , µm , ePM x 0,3 ≤ × ≤10 0,3 ≤ × ≤2,5 0,3 ≤ × ≤1 Air filters for general ventilation are widely used in heating, ventilation and air-conditioning applications o f buildings In this application, air filters significantly influence the indoor air quality and, hence, the health o f people, by reducing the concentration o f particulate matter To enable design engineers and maintenance personnel to choose the correct filter types, there is an interest from international trade and manu facturing for a well-defined, common method o f testing and classi fying air filters according to their particle e fficiencies, especially with respect to the removal o f particulate matter Current regional standards are applying totally di fferent testing and classification methods, which not allow any comparison with each other, and thus hinder global trade with common products Additionally, the current industry standards have known limitations by generating results which o ften are far away from filter per formance in service, i.e overstating the particle removal e fficiency o f many products With this new ISO 16890 series, a completely new approach for a classification system is adopted, which gives better and more meaningful results compared to the existing standards The ISO 16890 series describes the equipment, materials, technical specifications, requirements, qualifications and procedures to produce the laboratory per formance data and e fficiency classification based upon the measured fractional e fficiency converted into a particulate matter e fficiency (ePM) reporting system Air filter elements according to the ISO 16890 series are evaluated in the laboratory by their ability to remove aerosol particulate expressed as the e fficiency values ePM1 , ePM 2,5 and ePM10 The air filter elements can then be classified according to the procedures defined in this part o f ISO 16890 The particulate removal e fficiency o f the filter element is measured as a function o f the particle size in the range o f 0,3 µm to 10 µm o f the unloaded and unconditioned filter element as per the procedures defined in ISO 16890-2 A fter the initial particulate removal e fficiency testing, the air filter element is © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n v ISO 16890-1:2 016(E) conditioned according to the procedures defined in ISO 16890-4 and the particulate removal e fficiency is repeated on the conditioned filter element This is done to provide in formation about the intensity o f any electrostatic removal mechanism which may or may not be present with the filter element for test The average e fficiency o f the filter is determined by calculating the mean between the initial e fficiency and the conditioned e fficiency for each size range The average e fficiency is used to calculate the ePM x e fficiencies by weighting these values to the standardized and normalized particle size distribution o f the related ambient aerosol fraction When comparing filters tested in accordance with the ISO 16890 series, the fractional e fficiency values shall always be compared among the same ePM x class (ex ePM1 o f filter A with ePM1 o f filter B) The test dust capacity and the initial arrestance o f a filter element are determined as per the test procedures defined in ISO 16890-3 vi I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n INTERNATIONAL STANDARD ISO 16890-1:2016(E) Air filters for general ventilation — Part 1: Technical specifications, requirements and classification system based upon particulate matter efficiency (ePM) Scope This part o f ISO 16890 establishes an e fficiency classification system o f air filters for general ventilation based upon particulate matter (PM) It also provides an overview o f the test procedures, and specifies general requirements for assessing and marking the filters, as well as for documenting the test results It is intended for use in conjunction with ISO 16890-2, ISO 16890-3 and ISO 16890-4 The test method described in this part o f ISO 16890 is applicable for air flow rates between 0,25 m 3/s (900 m3/h, 530 ft3/min) and 1,5 m3/s (5 400 m3/h, 178 ft3/min), referring to a test rig with a nominal face area o f 610 mm × 610 mm (24 inch × 24 inch) ISO 16890 (all parts) re fers to particulate air filter elements for general ventilation having an e PM e fficiency less than or equal to 99 % when tested according to the procedures defined within ISO 16890-1, ISO 16890-2, ISO 16890-3 and ISO 16890-4 Air filter elements with a higher initial e fficiency are evaluated by other applicable test methods (see ISO 29463-1, ISO 29463-2, ISO 29463-3, ISO 29463-4 and ISO 29463-5) Filter elements used in portable room-air cleaners are excluded from the scope of this part of ISO 16890 The per formance results obtained in accordance with ISO 16890 (all parts) cannot by themselves be quantitatively applied to predict per formance in service with regard to e fficiency and li fetime Other factors influencing per formance to be taken into account are described in Annex A Normative references The following documents, in whole or in part, are normatively re ferenced in this document and are indispensable for its application For dated re ferences, only the edition cited applies For undated re ferences, the latest edition o f the re ferenced document (including any amendments) applies ISO 15957, Test  dusts  for  evaluating  air  cleaning  equipment ISO 16890-2, Air  filter  for  general  ventilation  —  Part  2:  Measurement  of  fractional  efficiency  and  air  flow  resistan ce ISO 16890-3, Air  filter  for  general  ventilation  —  Part  3:  Determination  of  the  gravimetric  efficiency  and  the  air  flow  resistance  versus  the  mass  o f  test  dust  captured ISO 16890-4, Air  filter  for  general  ventilation  —  Part  4:  Conditioning  method  to  determine  the  minimum  fractional  test  efficiency ISO 29464:2011, Cleaning  equipment  for  air  and  other  gases  —  Terminology Terms and definitions For the purposes o f this document, the terms and definitions given in ISO 29464 and the following apply 3.1 Arrestance and efficiency © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n ISO 16890-1:2016(E) 3.1.1 arrestance gravimetric efficiency A me a s ure o f the abi l ity o f a fi lter to remove mas s o f a s tanda rd te s t du s t from the a i r p as s i ng th rough it, under given op erating condition s N o te to entr y: T h i s me a s u re i s e xpre s s e d a s a weight p ercentage 3.1.2 initial arrestance initial gravimetric efficiency Ai ratio o f the ma s s o f a s tandard te s t du s t re ta i ne d b y the fi lter to the ma s s o f du s t fe d a fter the fi rs t lo ad i ng c ycle i n a fi lter te s t N o te to entr y: T h i s me a s u re i s e xpre s s e d a s a weight p ercentage 3.1.3 average arrestance average gravimetric efficiency Am ratio o f the to ta l ma s s o f a s ta nda rd te s t du s t re tai ne d b y the fi lter to the to ta l ma s s o f du s t fe d up to fi na l te s t pre s s u re d i fferenti a l 3.1.4 efficiency frac tion or p ercentage o f a cha l lenge conta m i nant th at i s remove d by a fi lter 3.1.5 ractional efficiency f abi l ity o f an a i r cle a n i ng device to remove p ar ticle s o f a s p e c i fic s i z e or s i z e range N o te to entr y: T he e ffic ienc y p lo tte d a s a fu nc tion o f p a r ticle s i z e ( 7.1 ) gi ve s the p a r ticle s i z e e ffic ienc y s p ec tru m [SOURC E: I SO 46 4: 011 , 61] 3.1.6 particulate matter efficiency ePM x e ffic ienc y ( 4) of an air cleaning device to reduce the mas s concentration of p ar ticles with an op tical diameter b etween , µm and x µm 3.2 filter element s truc ture made o f the fi lteri ng materi a l, its s upp or ts and its i nter face s with the fi lter hou s i ng 3.3 group designation de s ignation o f a group o f fi lters fu l fi l l i ng cer tai n re qu i rements i n the fi lter cla s s i fic ation N o te to entr y: T h i s p a r t o f I S O 16 de fi ne s ePM10 ”, “I S O e PM , ” a nd “I S O 3.4 Air flow rates I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n e PM1” fou r group s o f fi lters Group de s ign ation s a re “I S O co a rs e”, “I S O a s de fi ne d i n Table ISO 6890-1 : 01 6(E) 3.4.1 air flow rate qV volume o f r p as s i ng th rough the fi lter p er u n it ti me [SOURCE: ISO 29464:2011, 3.2.38] 3.4.2 nominal air flow rate q V,nom r flow rate ( 3.4.1 ) s p e c i fie d b y the manu fac tu rer 3.4.3 test air flow rate q Vt r flow rate ( 3.4.1) used for testing Particulate matter 3.5.1 particulate matter PM solid and/or liquid particles suspended in ambient air 3.5.2 particulate matter PM 10 particulate matter (3.5.1 ) wh ich p as s e s th rough a s i z e - s ele c tive i n le t with a % e ffic ienc y c ut- o ff at 10 μm aero dynam ic d ia me ter 3.5.3 particulate matter PM , particulate matter (3.5.1 ) wh ich p as s e s th rough a s i z e - s ele c tive i n le t with a % e ffic ienc y c ut- o ff at , μm aero dyna m ic d i ame ter 3.5.4 particulate matter PM particulate matter (3.5.1 ) wh ich p as s e s th rough a s i z e - s ele c tive i n le t with a % e ffic ienc y c ut- o ff at μm aero dynam ic d i ame ter 3.6 particle counter device for detecting and counting numbers of discrete airborne particles present in a sample of air [SOURCE: ISO 29464:2011, 3.27] Particle size and diameter 3.7.1 particle size particle diameter ge ome tric d i ame ter (e qu iva lent s pheric a l, particles of an aerosol [SOURCE: ISO 29464:2011, 3.1.126] © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n op tic a l or aero dyna m ic, dep end i ng on contex t) of the ISO 689 0-1 : 01 6(E) 3.7.2 particle size dis tribution presentation, in the form of tables of numb ers or of graphs , of the exp erimental res ults ob tained using a method or an app aratus cap able of meas uring the equivalent diameter of p ar ticles in a s ample or cap able o f giving the proportion o f particles for which the equivalent diameter lies between defined limits [SOURC E: I SO 46 4: 011 , 1 8] 3.8 resis tance to air flow pressure di fferential di fference in pressure between two points in an airflow system at specified conditions, especially when measured across the filter element (3 ) 3.9 tes t dust capacity amount o f a standard test dust held by the filter at final test pressure di fferential Symbols and abbreviated terms Ai I nitial arres tance, % di Lower l imit p ar ticle diameter in a s i ze range i, µm di+1 Upp er l imit p ar ticle diameter in a s i ze range i, µm di G eometric mean diameter of a s ize range i, µm Δd Width of a p ar ticle diameter s i ze range i, µm i Δln d Logarithmic width of a p ar ticle diameter s i ze range, i; l n is the natural logarithm to the i b ase of e , where e is an irrational and transcendental constant approximately equal to ,718 81 82 ∆ di = ln d5 ln d i + − ln d i = ln ( di + / d i ) , dimens ion les s Median p ar ticle s i ze of the log-normal dis tribution, µm Initial fractional e fficiency o f particle size range, i, o f the untreated and unloaded filter element, % (equals to the e fficiency values E o f the untreated filter element resulting Ei ps from I SO 16 -2 ) Fractional e fficiency o f particle size range, i, o f the filter element a fter an artificial conditioning step, % (equals to the e fficiency values E o f the filter element resulting ED, i ps from I SO 16 -2 after a conditioning s tep has b een carried out according to I SO 16 - 4) Average fractional e fficiency o f particle size range i, % EA , i e PM x, Minimum e fficiency value with x=1 µm, 2,5 µm or 10 µm o f the conditioned filter element, % e PM x E fficiency with x=1 µm, , µm or 10 µm, % q (d ) D iscrete p ar ticle volume dis tribution, dimens ion les s Q3 (d ) Cumu lative p ar ticle volume dis tribution, dimens ion les s σg Standard deviation of the log-normal dis tribution I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n ISO 689 0-1 : 01 6(E) Figure — Summary section o f per formance report 14 I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n ISO 6890-1 : 01 6(E) Key lower limit particle diameter in a size range , µm +1 lower limit particle diameter in a size range , µm geometric mean diameter of a size range , µm di logarithmic width of a particle diameter size range ; ln is the natural logarithm to the base of e, where e is = ln ( +1 / ) di i di i i Δln di i an irratio nal and trans cendental co ns tant ap p roximately equal to , 8 8 , dimens io nles s Δln di Ei D, EA, E initial di fractio nal i fractio nal i average di e fficiency o f p article s ize range i o f the untreated and unlo aded filter element, % e fficiency o f p article s ize range i o f the filter element a fter an artificial co nditio ning s tep , % fractio nal e fficiency ( Ei + D, )/2 of particle size range , % E i i Figure — E fficiency value reporting © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n 15 ISO 689 0-1 : 01 6(E) Figure — Reporting o f calculation o f the e fficiency values 16 I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n , ePM x ISO 16890-1:2016(E) Annex A (informative) Shedding from filters A.1 Shedding A.1.1 General The term “shedding” comprises three separate aspects o f filter behaviour: re-entrainment o f particles, particle bounce and release o f fibres or particulate matter from the filter material Some or all o f these phenomena are likely to occur to some extent during the li fe cycle o f an installed filter, especially in dry weather conditions Literature about shedding and its e ffect on filter per formances can be found in Re ferences [18] and [20] to [25] A.1.2 Re-entrainment o f particles As the quantity o f the arrested dust on the filter increases, the following e ffects may lead to reentrainment o f already captured particles into the air stream: — an incoming particle may impact on a captured particle and re-entrain it into the air stream; — the air velocity in the channels through the medium increases because o f the space occupied by captured particles Furthermore, the filter medium may become compressed by the increased resistance to airflow, thereby causing a further increase in velocity in the air channels The consequent increased fluid drag on deposited particles may re-entrain some o f them; — movements o f the filter medium during operation cause re-arrangement o f dust in the filter medium structure This leads to an immediate re-entrainment of dust Filter medium movements can be caused by a variety o f circumstances, such as: a) normal air flow through the filter; b) periodic (e.g daily) start/stop operation o f the air conditioning plant; c) varying air flow rates, caused by air flow control; d) mechanical vibration, caused by the fan or other equipment Re-entrainment o f particles may be measured and quantified (see Re ferences [1], [4], [25] and [26]) This e ffect is more pronounced for low e fficiency filters than for high e fficiency filters (see Re ferences [25] and [26]) A.1.3 Particle bounce In an ideal filtration process, each particle would be permanently arrested at the first collision with a filtering sur face such as a fibre, or with an already captured particle For small particles and low air velocities, the energy o f adhesion greatly exceeds the kinetic energy o f the airborne particle in the air stream, and once captured, such particles are very unlikely to be dislodged from the filter As particle size and air velocity increase, the kinetic energy o f particles increases and, hence, larger particles may “bounce” o ff a fibre As a result, they normally lose enough energy to be captured in a subsequent collision with a fibre However, i f no contact with a fibre follows, the particle is shed, i.e discharged © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n 17 ISO 16890-1:2016(E) from the fi lter, wh ich re s u lts i n a corre s p ond i ng re duc tion o f e ffic ienc y (see References [5] and [6] ) T here fore , a s de s crib e d i n I S O for p ar ticle s o f th i s s i ze nge 16 -2 , to quanti fy th i s e ffe c t and to s ider it i n the e ffic ienc y measurement, for particles larger than µm, solid KCl particles shall be used as a test aerosol Using a liquid aerosol, the particle bounce effect cannot be measured at all T he p ar ticle b ounce e ffe c t i s more pronou nce d for low e fficienc y fi lters tha n for h igh e ffic ienc y fi lters A.1.4 Release o f fibres or particulate matter from filter material S ome fi lter me d i a either contai n and/or generate lo o s e fibre s , or p a r tic u l ate matter m ight b e em itte d from the fi lter ’s de s ign materi a l s or the fi lter me d iu m (e g bi nder, e tc) D u ri ng fi lter op eration, e s p e c ia l ly i n tu rbu lent a i r flow or du ri ng vari able a i r flow or s tar t- s top op eration, the s e materia l s c an b e em itte d i nto the r s tre am T he ex tent o f s uch she dd i ng dep end s on the i ntegrity o f the me d iu m fibre s tr uc tu re and its rigid ity and s tabi l ity i n the face o f var yi ng r velo c itie s , as wel l a s the s tabi l ity o f the fi lter de s ign materi a l s (e g the bi nder wh ich hold s fibre s to ge ther) , th roughout the op erati ng l i fe o f the fi lter I t s hou ld b e no te d, however, that the quantity o f fibre s or p ar tic u late matter s he d i n th i s way i s norma l ly negl igible i n comp ari s on with the to ta l a mount o f du s t p ene trati ng th rough a fi lter lo ade d by typica l envi ron menta l du s t bu rden (s e e Re ference s [ 9] and [10] ) A.2 Testing o f shedding effects Us ers s hou ld b e aware o f the p o s s ibi l ity o f fi lters exh ibiti ng s he dd i ng b eh aviou r i n prac tic a l u s e From the u s er ’s p oi nt o f view, it wou ld b e advantage ou s to de te c t any s he dd i ng b eh aviou r o f a fi lter H owever, s uch me a s urements are no t that e as y to p er form D i fferent attemp ts have b e en made i n re cent ye ars to me as u re s he dd i ng qua ntitatively, but up to now it s no t b e en p o s s ible to defi ne a me tho d wh ich generates reproducible and repeatable test results T he a rre s ta nce me as u rements for low e fficienc y fi lters pre s crib e d i n th i s p ar t o f I S O 16 refle c t the shedding effects described above (see A.1) on ly p ar tly, i f at a l l H owever, any d rop i n the va lue o f the arre s ta nce or re s i s tance duri ng the cou rs e o f a fi lter lo ad i ng te s t s hou ld b e ta ken as a s eriou s i nd ic ation that s he dd i ng may have o cc u rre d T he e ffic ienc y/p a r ticle s i z e re s u lts for h igher e ffic ienc y fi lters provide d i n th i s p a r t o f I S O 16 refle c t norma l ly none o f the ab ove de s c rib e d s he dd i ng e ffe c ts , a s the aero s ol u s e d (DEHS) aerosol for the s e fi lters i s a l iquid Membrane s ampl i ng down s tre a m o f fi lters and m icro s copic ana lys e s o f the membra ne s cou ld de term i ne o cc u rrence o f th i s typ e o f s he dd i ng , but s uch a me tho d i s no t defi ne d here 18 I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n ISO 16890-1:2016(E) Annex B (informative) Examples In this example, measurement results and the calculation and classification method is shown for a synthetic pocket filter (Filter A) classified F7 to EN 779 and MERV-A 14 to ASHRAE 52.2 e PM e fficiencies have been calculated by using the MS Excel file included in this part o f ISO 16890 (http://standards.iso.org/iso/16890/-1/) Table B.1 — Example filter data for the fractional efficiency values o f Filter A di i 10 11 µm 0,3 0,5 0,7 1,0 1,3 1,6 2,2 3,0 4,0 5,5 7,0 +1 di µm 0,5 0,7 1,0 1,3 1,6 2,2 3,0 4,0 5,5 7,0 10,0 © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n di µm 0,39 0,59 0,84 1,14 1,44 1,88 2,57 3,46 4,69 6,20 8,37 Δln d i 0,51 0,34 0,36 0,26 0,21 0,32 0,31 0,29 0,32 0,24 0,36 Ei % 66,0 78,0 86,3 92,0 95,0 96,9 98,4 99,7 100 100 100 D, E i % 37,0 49,0 59,0 68,0 75,0 83,0 91,0 96,5 98,6 100 100 A, E i % 51,5 63,5 72,7 80,0 85,0 90,0 94,7 98,1 99,3 100 100 19 ISO 16890-1:2016(E) Key X particle size (µm) Y fractio nal e fficiency (% ) Figure B.1 — Example filter data for the fractional efficiency values o f Filter A plotted as a function o f the particle size (particle size e fficiency spectra) Table B.2 — Example for the calculation o f ePM efficiencies for Filter A i di µm urban i Δln d q 3u ( d i ) q 3u ( d i ) ⋅∆ d i E D, i q 3u ( d i ) ⋅∆ln d i E A, i q 3u ( d i ) ⋅∆ln d i ln ⋅ ⋅ e PM x, % ePM 1, ePM 45 59 ePM 2,5 0,39 0,51 0,219 17 0,111 960 0,041 425 0,057 659 0,59 0,34 0,165 68 0,055 745 0,027 315 0,035 398 0,84 0,36 0,115 22 Σ line 1-3 0,041 097 0,208 802 0,024 247 0,092 988 0,029 857 0,122 915 1,14 0,26 0,085 03 0,022 309 0,015 170 0,017 847 1,44 0,21 0,076 18 0,015 817 0,011 863 0,013 445 1,88 0,32 0,080 22 0,025 546 0,021 203 0,022 978 ,57 0,31 0,099 84 Σ line 1-7 0,030 966 0,303 440 0,028 179 0,169 403 0,029 324 0,206 510 ePM 2.5, ,57 0,31 0,099 84 0,030 966 0,028 179 0,029 324 ePM 2.5, 0,39 0,51 0,090 88 0,046 422 0,023 908 0,59 0,34 0,075 71 0,025 474 0,016 176 0,84 0,36 0,070 14 0,025 016 0,018 174 1,14 0,26 0,076 28 0,020 013 0,016 011 1,44 0,21 0,088 33 0,018 340 0,015 589 1,88 0,32 0,108 04 0,034 406 0,030 949 ,57 0,31 0,137 26 0,042 573 0,040 316 3,46 0,29 0,167 08 0,048 067 0,047 154 20 PM x % I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n e 56 68 ePM 2,5 ISO 6890-1 : 01 6(E) Table B di i 10 11 µm 4,69 6,20 8,37 Δln di urban q 3u ( d i ) q 3u ( d i ) 0,32 0,195 42 0,24 0,216 71 0,36 0,231 43 Σ line 1-11 (continued) E D, i q 3u ( d i ) ⋅∆ln d i ⋅ ⋅∆ d i ln 0,062 233 0,052 261 0,082 545 E A, i q 3u ( d i ) ⋅∆ln d i e ⋅ PM , % 0,061 798 0,052 261 0,082 545 0,4573 51 e x PM % x ePM 10 89 0,40 879 NOTE The data above are rounded Since for the data calculation the actual formulae have been used with more digits than given above, there might be some rounding differences when recalculating the data with the values given above In the example above, the filter is rated according to Table as ISO ePM2,5 65 % Another example is the one o f a glass-fibre paper based rigid filter (Filter B) classified F9 to EN 779 and MERV-A 15 to ASHRAE 52.2 Table B — E xample filter data +1 di di in µm 0,3 0,5 0,7 1,0 1,3 1,6 2,2 3,0 4,0 5,5 7,0 i 10 11 in µm 0,5 0,7 1,0 1,3 1,6 2,2 3,0 4,0 5,5 7,0 10,0 Table B — E xample i di in µm Δln d 0,39 0,59 0,84 0,51 0,34 0,36 1,14 1,44 1,88 2,57 i 0,26 0,21 0,32 0,31 urban distribution in µm 0,39 0,59 0,84 1,14 1,44 1,88 2,57 3,46 4,69 6,20 8,37 for the i 0,51 0,34 0,36 0,26 0,21 0,32 0,31 0,29 0,32 0,24 0,36 calculation o f the E % 82,0 90,0 94,3 96,7 98,2 98,8 98,9 99,2 99,7 100 100 0,111 960 0,055 745 0,041 097 0,088 449 0,049 056 0,038 220 0,090 128 0,049 613 0,038 488 Σ line 1-3 0, 8 02 0,175 0,178 2 Σ line 1-7 0, 03 40 0, 8 0, 71 03 0,219 17 0,165 68 0,115 22 0,085 03 0,076 18 0,080 22 0,099 84 ln 0,022 309 0,015 817 0,025 546 0,030 966 0,021 417 0,015 501 0,025 163 0,030 563 A, E i i % 80,5 89,0 93,7 96,4 98,1 98,7 98,8 99,1 99,7 100 100 ePM e fficiencies for Filter B ⋅∆ d i ⋅ o f Filter B % 79,0 88,0 93,0 96,0 98,0 98,5 98,7 99,0 99,6 100 100 E A, i q 3u ( d i ) ⋅∆ln d i q 3u ( d i ) q 3u ( d i ) D, Ei Δln d E D, i q 3u ( d i ) ⋅∆ln d i © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n di for the fractional e fficiency values ⋅ 0,021 495 0,015 517 0,025 201 0,030 594 e PM , % x e PM % x ePM1 , mi n ePM 84 85 ePM , mi n ePM , 88 89 21 ISO 689 0-1 : 01 6(E) Table B i urb an di d i s tribution Δ l n di i n µm q 3u ( d i ) 0,39 , 51 0,090 88 q 3u ( d i ) ⋅∆ d i ln , 42 (continued) E D, i q 3u ( d i ) ⋅∆ln d i ⋅ E A, i q 3u ( d i ) ⋅∆ln d i ⋅ e PM x, % e PM x % , 70 , 59 0,3 , 75 71 , 02 474 , 2 67 0, 84 0, 36 , 70 14 , 02 016 , 42 ,14 0,26 , 76 , 02 01 , 019 ,4 0,21 0,088 33 , 01 0 , 017 91 1,88 0, 32 ,10 0,03 406 , 3 42 , 57 0,31 ,1 , 42 57 , 42 62 ,4 0, 29 ,167 , 67 , 47 63 4, 69 0, 32 ,19 42 , 62 3 , 62 016 10 6,20 0, 24 , 16 71 , 2 61 , 52 61 11 8,37 0, 36 , 43 , 82 45 , 45 ePM 10 Σ line 1-11 0,457 51 0,4 41 03 96 NO T E T he data ab ove are rou nde d Si nce for the data ca lcu lation the ac tua l formu lae have b e en us ed with more digits than given ab ove, there m ight b e s ome rou nd i ng d i fferences when rec a lcu lati ng the data with the va lues given ab ove I n the exa mple ab ove, the fi lter i s rate d accord i ng to Table as I SO e PM1 85 % 22 I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n ISO 16890-1:2016(E) Annex C (informative) Estimation o f downstream fine dust concentrations This is an example on how this part of ISO 16890 could be used for the estimation of PM concentrations in the air downstream o f the filter, i f the upstream, PM , concentration, C up (PM ), is known An estimate for downstream concentration, C down(PM ), can be calculated using Formula (C.1) C down(PM ) = Cup (PM ) ⋅ (1 - PM ) (C.1) x x x x x e x In Formula (C.1), the PM x e e fficiencies ePM10 , ePM 2,5 and ePM1 are the ones derived from this part of ISO 16890 for the filter type under concern As an example, it shall be assumed that the concentration upstream o f a filter stage is 15 µg/m for PM 2,5 and 40 µg/m3 for PM10 The efficiency values ePM of a filter stage shall be ePM 2,5 = 68 % = 0,68 and e PM 10 = 89 % = 0,89 (example Filter A in Annex B) Using Formula (C.1) the downstream concentrations x x are calculated as: C down(PM 2,5 ) = 15 µg/m3 ⋅ (1 - 0,68) = 4,8 µg/m3 C down(PM10) = 40 µg/m3 ⋅ (1 - 0,89) = 4,4 µg/m3 (C.2) NOTE Real concentration values can differ from the calculation depending on operation conditions of the filters and the actual ambient aerosol particle size distribution (deviation from the ones assumed in this part o f ISO 16890) NOTE As PM 2,5 is a sub-fraction of PM10 , in actual ambient aerosol it is impossible for C down(PM10) to be smaller than C down(PM 2,5 ) In this case, the difference results from the fact that two different ambient aerosol distributions (rural and urban) are defined to calculate PM 2,5 and PM 10 If this occurs when estimating the concentrations downstream o f an air filter, where C down(PM 10 ) is smaller than C down(PM 2,5 ), it shall be assumed that C down(PM10) = C down(PM 2,5 ) e e As the fractional e fficiency o f an air filter depends on the particle size, the normalized downstream particle size distribution di ffers significantly to the one upstream o f a filter (see Figures C.1 and C.2) As the ePM efficiencies derived from this part of ISO 16890 have been calculated by assuming a standardized particle size distribution and as the distribution downstream o f a filter significantly differs from this standardized distribution, Formula (C.1) cannot be used with the ePM efficiencies derived from this part o f ISO 16890 o f the individual following filter stages However, the methodology o f this part o f ISO 16890 can also be applied to calculate a cumulated e fficiency value, ePM cum , of a multi-stage filter system using Formula (4) with the cumulated fractional e fficiency, Ecum, x x x, i ePM x , cum = n ∑= i ePM x , cum = E of stages cum , i cum , i ∑= E cum , i d i ) ⋅ ∆ln d i n / ⋅q 3r ( d i ) ⋅ ∆ln d i ∏=  k j ∑q i =1 3u ( n / q ∑ i= 3r ( d i ) ⋅ ∆ln d i d i ) ⋅ ∆ln d i fo r fo r x=1 µm and x = 10 µm x = 2, µm (C.3) 1 © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n 3u ( = − ⋅q n i where E −E A,  , j is the number o f the filter stage and k the total number i ( Filter j )  23 ISO 16890-1:2016(E) In case o f a multi-stage filter system, the PM concentration downstream o f the final filter stage can then be calculated using the cumulated e fficiency ePM in Formula (C 1) Using the filter data given as x, c u m example for Fi lter A and B in Annex B , this res u lts in the example data shown in the Table C and C shows the data resulting from the typical urban particle size distribution, while Table shows the data resulting from a typical rural one (see Table ) b elow Table C C.2 Table C.1 — Example calculation for the cumulation o f a two-stage filter system using the typical urban aerosol distribution di di+1 di i n µm i n µm i n µm 0,30 0,50 0, 39 q 3u ( d i ) EA , i q 3u ( d i ) EA , I Fi lter A downs tre am Fi lter B in % Fi lter A in % , 2 19 51 , ,1 80,5 E cum i , in % 90,5 q 3u ( d i ) downs tream Fi lter B , 4 59 0,50 ,70 0, 59 , 19 17 63 , ,10 9, 96,0 , 02 ,70 1,00 0, 84 ,16 ,7 , 47 ,7 98,3 0,0 06 65 1,00 1,30 ,14 ,11 2 80,0 , 51 ,4 9, , 02 0 1,30 1,60 ,4 0,0 85 03 85 ,0 , 017 01 ,1 9,7 , 0 62 ,60 ,20 1,88 , 76 90,0 , 011 43 ,7 9,9 0,000 22 ,20 ,00 , 57 0,080 22 4,7 0,008 06 98,8 9,9 , 0 11 ,00 4, 0 ,4 0,09 9 ,1 0,005 9 9,1 10 0,000 06 4, 0 5,50 4, 69 ,1 8 9, , 02 41 9,7 10 0,0 0 02 5,50 7, 0 6,20 ,1 5 10 0 , 01 10 10 0,000 00 7, 0 10 , 0 8,37 ,17 57 10 0,000 00 10 10 0,000 00 NO TE T he data ab ove are rou nde d Si nce for the data ca lcu lation the ac tua l formu lae have b e en us ed with more digits than given ab ove, there m ight b e s ome rou nd ing d i fferences when rec a lcu lati ng the data with the va lues given ab ove Key X p article size (µm) Y logarithmic particle distribution density q 3u urban distribution (this part of I SO 68 ) downstream filter A downstream filter B Figure C.1 — Particle size distribution density o f aerosol upstream (urban distribution) and downstream o f example Filter A and B using the typical urban aerosol distribution 24 I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n ISO 16890-1:2016(E) Table C.2 — Example calculation for the cumulation o f a two-stage filter system using the typical rural aerosol distribution A q ( d ) A q ( d ) 3r i 3r i Filter A downstream Filter B E cum i downstream in µm in µm in µm In % in % in % Filter A Filter B 0,30 0,50 0,39 0,096 51 51,5 0,060 80 80,5 90,5 0,019 46 0,50 0,70 0,59 0,090 88 63,5 0,044 08 89,0 96,0 0,008 59 0,70 1,00 0,84 0,075 71 72,7 0,027 63 93,7 98,3 0,003 04 1,00 1,30 1,14 0,070 14 80,0 0,019 18 96,4 99,3 0,001 22 1,30 1,60 1,44 0,076 28 85,0 0,015 26 98,1 99,7 0,000 56 1,60 2,20 1,88 0,088 33 90,0 0,013 25 98,7 99,9 0,000 25 2,20 3,00 2,57 0,108 04 94,7 0,010 86 98,8 99,9 0,000 15 3,00 4,00 3,46 0,137 26 98,1 0,007 27 99,1 100 0,000 09 4,00 5,50 4,69 0,167 08 99,3 0,003 17 99,7 100 0,000 03 5,50 7,00 6,20 0,195 42 100 0,001 37 100 100 0,000 00 7,00 10,00 8,37 0,216 71 100 0,000 00 100 100 0,000 00 NOTE The data above are rounded Since for the data calculation the actual formulae have been used with more digits than given above, there might be some rounding differences when recalculating the data with the values given above di Key X Y +1 di di E ,i q 3r ( d i ) E ,i , particle size (µm) logarithmic particle distribution density q3r rural distribution (this part of ISO 16890) downstream filter A downstream filter B Figure C.2 — Particle size distribution density o f aerosol upstream (rural distribution) and downstream o f example Filters A and B using the typical rural aerosol distribution © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n 25 ISO 689 0-1 : 01 6(E) Bibliography [1] B aron P , & Willeke K Aerosol Measurement: Principles, Techniques, and Applications Wiley Interscience Publications, John Wiley & Sons, New York, USA, Second Edition, 2005 Ambient  air  —  Standard  gravimetric  measurement  method  for  the  determination  o f  the  PM10  or  PM2,5  mass  concentration  o f  suspended  particulate  matter [2 ] E N 41 : 014, [3 ] I S O 463 (al l p ar ts) , [4] AS TM-F6 49 - , [5 ] ASM E/Standard M FC-3 M-19 , [6] High-efficiency  filters  and  filter  media  for  removing  particles  in  air Standard  practice  for  secondary  calibration  o f  airborne  particle  counter  using  comparison  procedures Measurement  o f  fluid  flow  in  pipes  using  orifice  nozzle  and  venturi AS TM-F3 -9 , Standard  practice  for  calibration  o f  an  airborne  particle  counter  using  monodispersed  spherical  particles f eld J H , & Pandis S.N Atmospheric chemistry and physics Wiley Interscience Publications, John Wiley & Sons, New York, USA, 2006 [7 ] S ein [8] ANSI/ASH R AE/Standard 52 -2 01 : for  Method  o f  Testing  General  Ventilation  Air-Cleaning  Devices  Removal  Efficiency  by  Particle  Size American Society o f Heating, Re frigerating and Air- C onditioning E ngineers , I nc , Atlanta (2 01 ) [9] [10] [11] E N 779 : 01 , Particulate  air  filters  for  general  ventilation;  requirements,  testing,  marking I S O 463 -3 : 011 , High-e fficiency  filters  and  filter  media  for  removing  particles  in  air  —  Part  3:  Testing  flat  sheet  filter  media Eurovent 4/9:1997, Method o f testing air filters used in general ventilation for determination o f fractional e fficiency European Committee o f Air Handling & Re frigeration Equipment M anufac turers , Paris , 19 W.C Aerosol Technology: Properties, Behavior and Measurement o f Airborne Particles Wiley-Interscience, 1999 [1 ] H inds [1 ] B ao L Investigation  on  Size  Distribution  o f  Ambient  Aerosol  Particles  for  ISO  Standardization  o f  Test  Dusts  for  General  Ventilation  Air  filters Research Con ference by The Society o f Powder Technology, Japan, Autumn 2011 [14] G Ambient  particle  size  distribution  survey  for  standard  test  dust  determination  for  air  ventilation  filters 29 Symp on Aerosol Science & Technology by Japan Association o f Aerosol H ui Science and Technology, Japan, August,2012 [1 ] N o J AC A 7-2 01 : [16] J I S Z 01 : 0 [17 ] The  Guideline  o f  Substitute  Materials  for  DOP Test  powders  and  test  particles:  Test  particle  2,  8.1  a)  poly-alpha  olefins  with  specific  gravity  between  0,80  to  0,82  and  kinematic  viscosity  between  3,8  to  4,1  mm²/s  (100  °C) JIS B 9 (2 011) , Test  method  o f  air  filter  units  for  ventilation  and  electric  air  cleaners  for  ventilation [18] T H , Yang C H , Kulp R H Effects  o f  Fan  Cycling  on  the  Performance  o f  Particulate  Air  filters  used  for  IAQ  Control Indoor Air ’96, The 7th Int Con f on Indoor Air Quality and Climate, Kuehn Vol 4, p 11 , 19 [19] 26 N ordtes t N T V VS 117:19 , Test  method  for  electret  filters  -  Determination  o f  the  electrostatic  enhancement  factor  o f  filter  media I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n ISO 16890-1:2 016(E) [20] P hillips B.A., Davis W.T., D e ver M Investigation of the E ffect of a Topically Applied Tackifier in Reducing Particle Bounce in a Melt-Blown Air Filter Filtr Sep 1996, p 933 [21] Reichert F., & O hde A Untersuchung zur Freisetzung von Filterfasern und zur Ablösung von schadsto ffbelasteten Partikeln durch Lu ftfilter in RLT-Anlagen unter besonderer Berücksichtigung der in der Praxis auftretenden Schwingungszustände Abschlussbericht zum bmb+f Forschungsvorhaben FKZ 1701199 FHTW Berlin, 2002 [22] Reichert F., & O hde A Untersuchungen des Fasershedding an typgeprü ften Feinstaubtaschenfiltern in Raumlu fttechischen Anlagen Colloquium Filtertechnik, Universität Karlsruhe, 2004 [23] Ri vers R D., & M urph y D J Determination  of  Air  Filter  Performance  under  Variable  Air  Volume  (VAV)  Conditions ASHRAE 675-RP:1996 [24] Qi an Y., Willeke K., Ule vicius V., Grinshpun S.A Particle Re-entrainment from Fibrous Filters Aerosol Sci Technol., 27 p [25] Ginestet A., J ohnsson M., P ugnet D., C arlsson T Shedding  of  particles  from  HVAC  filters Filter media, Volume 4, Issue 1, p 11-14, 2010 [26] Ginestet A., & P ugnet D The fractional efficiency o f air filters used in general ventilation J Aerosol Sci 1997, 28 (Supplement 1) pp S293–S294 © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n 27 ISO 16890-1:2 016(E) ICS  91.140.3 Price based on 27 pages © ISO 2016 – All rights reserved I n tern ati o n al Org an i z ati o n fo r S tan d ard i z ati o n

Ngày đăng: 12/04/2023, 18:17

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN