Effects of Radiation on Materials volume n FOURTEENTH INTERNATIONAL SYMPOSIUM r ackan/Stoller/Kumar STP 1046 STP 1046 Effects of Radiation on Materials: 14th International Symposium (Volume II) N H Packan, R E Stoller, and A S Kumar, editors ASTM 1916 Race Street # Philadelphia, PA 19103 Library of Congress Cataloging-in-Publication Data Effects of radiation on materials: 14th international symposium / N H Packan, R E Stoller, and A S Kumar, editors (STP; 1046) Papers from the Fourteenth International Symposium on Effects of Radiation on Materials, held June 27-30, 1988 in Andover, Mass and sponsored by ASTM Committee E-10 on Nuclear Technology and Applications Includes bibliographies and index ISBN 0-8031-1266-1 Materials—Effect of radiation on—Congresses I Packan, N H (Nicholas H.) II Stoller, R E (Roger E.), 1951- III Kumar, A S (Arvind S.) IV International Symposium on Effects of Radiation on Materials (14th: 1988: Andover, Mass.) V ASTM Committee E-10 on Nuclear Technology and Applications VI Series: ASTM special technical publication; 1046 TA418.6.E334 1990 89-18449 620.1'1228—dc20 CIP Copyright e by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1990 NOTE The Society is not responsible, as a body, for the statements and opinions advanced in this publication Peer Review Policy Each paper published in this volume was evaluated by three peer reviewers The authors addressed all of the reviewers' comments to the satisfaction of both the technical editor(s) and the ASTM Committee on Publications The quality of the papers in this publication reflects not only the obvious efforts of the authors and the technical editor(s), but also the work of these peer reviewers The ASTM Committee on Publications acknowledges with appreciation their dedication and contribution of time and effort on behalf of ASTM Printed in Baltimore MD May 1W0 Foreword Effects of Radiation on Materials: Fourteenth International Symposium was presented at Andover, MA, 27-30 June 1988 The symposium was sponsored by ASTM Committee E10 on Nuclear Technology and Applications N H Packan, Oak Ridge National Laboratory, presided as chairman of the symposium with R E Stoller, Oak Ridge National Laboratory, and A S Kumar, University of Missouri-Rolla, as vice-chairmen There are two resulting Special Technical Publications (STPs) from the symposium: Effects of Radiation on Materials: Fourteenth International Symposium (Volumes I and II), STP1046, and Reduced-Activation Materials for Fusion Reactors, STP 1047 Contents Overview PRESSURE VESSEL STEELS DOSE RATE EFFECTS Effects of 50°C Surveillance and Test Reactor Irradiations on Ferritic Pressure Vessel Steel Embrittlement—RANDY K NANSTAD, SHAFIK K ISKANDER, ARTHUR F ROWCLIFFE, WILLIAM R CORWIN, AND G ROBERT ODETTE Application of a United Kingdom Magnox Steel Irradiation Model to the HFIR Pressure Vessel—STEPHEN G DRUCE 30 Tensile Properties of Neutron Irradiated A212B Pressure Vessel Steel— MARGARET L HAMILTON AND HOWARD L HEINISCH Experimental Assessments of Gundremmingen RPV Archival Material for Fluence Rate Effects Studies—J RUSSELL HAWTHORNE AND ALLEN L HISER 45 55 Investigation of Materials from a Decommissioned Reactor Pressure Vessel— A Contribution to the Understanding of Irradiation Embrittlement— KARL KUSSMAUL, JURGEN FOHL, AND THOMAS WEISSENBERG 80 PRESSURE VESSEL STEELS FINE PRECIPITATES AND DEFECT CLUSTERS Fine-Scale Microstructural Characterization of Pressure Vessel Steels and Related Materials Using APFIM—MICHAEL K MILLER AND MARY GRACE BURKE 107 An Analysis of Small Clusters Formed in Thermally Aged and Irradiated FeCu and FeCuNi Model Alloys—JOHN T BUSWELL, COLIN A ENGLISH, MARK G HETHERINGTON, WILLIAM J PHYTHIAN, GEORGE D W SMITH, AND GEOFFREY M WORRALL 127 SANS and DENS Study of Irradiation Damage in a Reactor Pressure Vessel Material with a Systematic Variation of Irradiation Dose and Heat Treatments—GEORGES SOLT, FRIEDRICH FRISIUS, WALDEMAR B WAEBER, AND WILLI BUHRER 154 Magnetoacoustic and Barkhausen Emission Studies of Neutron Irradiated Iron and Iron-Copper Alloys—EDWARD A LITTLE, DAVID J BUTTLE, AND CHRISTOPHER B SCRUBY 165 Precipitation in an Aged Fe-0.85 at%Cu Alloy Observed by Muon Spin Rotation Spectroscopy: A Prospective Method of Studying Irradiation Hardening— GEORGES SOLT, WALDEMAR B WAEBER, ULR1CH ZIMMERMANN, PHILIP TIPPING, FREDY N GYGAX, BASSAM HITTI, ALEXANDER SCHENCK., AND PETER A BEAVEN 180 PRESSURE VESSEL STEELS WELDS An Evaluation of Linde 80 Submerged-Arc Weld Metal Charpy Data Irradiated in the HSST Program—ARTHUR L LOWE, JR 201 Effects of Radiation on Klc Curves for High Copper Welds—RANDY K NANSTAD, DONALD E MCCABE, BLAINE H MENKE, SHAFIK K ISKANDER, AND FAHMY M HAGGAG 214 Improved Correlations for Predicting the Effects of Neutron Radiation on Linde 80 Submerged-Arc Weld Metals—ARTHUR L LOWE, JR AND JAMES W PEGRAM 234 PRESSURE VESSEL STEELS FRACTURE TOUGHNESS Fracture Toughness Shifts and Bounds for Irradiated Reactor Pressure Vessel Materials—WILLIAM L SERVER AND TIMOTHY J GRIESBACH 253 Comparison of Experimental 41J Shifts with the Predictions of German KTA 3203 and U.S NRC Regulatory Guide 1.99—DIETER BELLMANN AND JURGEN AHLF 265 The Nil-Ductility Temperature Shift Arising from Irradiation as Predicted Through the French Test Reactor Experiments—DOMINIQUE MIANNAY, DANIEL DUSSARTE, AND PIERRE SOULAT 284 The Effects of Mechanical Stress Gradients on Irradiation-Induced Embrittlement of Pressure Vessel Steel—JAMES F STUBBINS, ABDERRAFI M OUGOUAG, AND JOHN G WILLIAMS 305 The Effect of Nickel in Irradiation Hardening of Pressure Vessel Steels— G ROBERT ODETTE AND G E LUCAS Fracture Resistance of Irradiated Stainless Steel Clad Vessels—DONALD E MCCABE 323 348 Tensile and Charpy Impact Behavior of an Irradiated Three-Wire Series-Arc Stainless Steel Cladding—FAHMY M HAGGAG, WILLIAM R CORWIN, DAVID J ALEXANDER, AND RANDY K NANSTAD Correlation of C, and Drop-Weight Transition Temperature Increase Caused by Irradiation—FRANZ J SCHMITT 361 373 MECHANICAL PROPERTIES Residual Tensile Properties at Low and High Strain Rates of A1SI 316H Predamaged by Creep, Low Cycle Fatigue, and Irradiation to dpa— CARLO ALBERTINI, KUNIHIRO IIDA, ANGELO DEL GRANDE, MARIO FORLANI, ALBERTO PACHERA, AND MARIO MONTAGNANI 387 Response of Ferritic/Martensitic Steels to Neutrons at Irradiation Temperatures from 20 to 823 K—AKIRA KOHYAMA, KAZUSI HAMADA, KENTARO ASAKURA, 404 AND HIDEKI MATSUI Serrated Flow in Irradiated and Partially Denitrided Mild Steel—K LINGA MURTY AND SHEIKH T MAHMOOD 422 Effects of High Thermal and High Fast Fluences on the Mechanical Properties of Type 6061 Aluminum on the HFBR—JOHN R WEEKS, CARL J CZAJKOWSKI, AND PAUL R TICHLER 441 Charpy Impact Test Results of Ferritic Alloys Irradiated to 10 dpa at 55°C— WAN-LIANG HU AND DAVID S GELLES 453 Fracture Behavior of Ferritic Steels Irradiated at 50°C in the High-Flux Isotope Reactor (HFIR)—FAN-HSIUNG HUANG 459 Evaluation of the Fracture Toughness of Irradiated Stainless Steel Using Short Rod Specimens—w L CLARKE, M A WHITE, AND S RANGANATH 470 Effect of Specimen Size on the Upper Shelf Energy of Ferritic Steels— ARVIND S KUMAR, FRANK A GARNER, AND MARGARET L HAMILTON 487 Evaluation of Irradiation Embrittlement by Instrumented Impact Testing— SUBRATA CHATTERJEE, S ANANTHARAMAN, U K VISWANATHAN, AND K S SIVARAMAKRISHNAN 496 Evaluation of Ring Tensile Test Results—A Semi-empirical Approach— SUBRATA CHATTERJEE, S ANANTHARAMAN, K.S BALAKRISHNAN, AND K.S SIVARAMAKRISHNAN 515 IRRADIATION CREEP AND SWELLING Irradiation Creep Behavior of the Fusion Heats of HT9 and Modified 9Cr-lMo Steels—RAYMOND J PUIGH AND FRANK A GARNER Irradiation Creep in Austenitic Stainless Steels at 60 to 400°C with a Fusion Reactor Helium to dpa Ratio—MARTIN L GROSSBECK, LOUIS K MANSUR, AND MITSUO P TANAKA 527 537 Influence of Thermomechanical Treatment and Environmental History on Creep, Swelling, and Embrittlement of AISI 316 at 400°C and 130 dpa— DOUGLAS L PORTER, ELON L WOOD, AND FRANK A GARNER 551 Swelling and In-Pile Creep Behavior of Some 15Crl5NiTi Stainless Steels in the Temperature Range 400 to 600°C—KORNELIUS HERSCHBACH, WALTER SCHNEIDER, AND HANS-J BERGMANN 570 The Cantilever Beam Method for Simulating Irradiation Creep and Growth— JOHN R PARSONS AND CARL W HOELKE 588 Effects of Neutron Irradiation to 98 dpa on the Swelling of Various Copper Alloys—HOWARD R BRAGER AND FRANK A GARNER 599 DAMAGE FACILITIES AND DOS1METRY EUR AC: A Concept for a European Accelerator Neutron Source— WALTER KLEY, GEORGE R BISHOP, AMAR S1NHA, AND JOSE MANUEL PERLADO 607 Analysis of Transmutation Nuclide Production in a Spallation Neutron Source— AMAR SINHA AND MAHADEVA SRINIVASAN 623 Radiation Damage Calculations for Compound Materials— LAWRENCE R GREENWOOD 633 Neutron Spectra Calculations for Ex-Core Irradiation Experiments at the Buffalo Reactor—G PRILLINGER, EMMERT D MCGARRY, AND J RUSSELL HAWTHORNE 642 Consideration of Calculated and Experimental Neutron Dosimetry for Out-of-Core Metallurgy Irradiation Experiments at the Buffalo Reactor— EMMERT D MCGARRY, J ROGERS, G PRILLINGER, AND J RUSSELL HAWTHORNE 657 BREEDER CORE MATERIALS Neutron-Induced Swelling of Commercial Alloys at Very High Exposures— FRANK A GARNER AND DAVID S GELLES Effect of Neutron Radiation on Mechanical Properties of Permanent Near Core Structures—ALI ASGHAR TAVASSOLI 673 684 Influence of Swelling on Irradiated CW Titanium Modified 316 Embrittlement— ANTOINE FISSOLO, RICHARD CAUVIN, JEAN-PIERRE HUGOT, AND VIVIANE LEVY 700 The Influence of Creep Damage and Neutron Irradiation on the Tensile Properties of Type 304 Stainless Steel—BOB VAN DER SCHAAF 714 Simulated Transient Behavior of HT9 Cladding—N SCOTT CANNON, FAN-HSIUNG HUANG, AND MARGARET L HAMILTON 729 The Swelling Behavior of Titanium-Stabilized Austenitic Steels Used as Structural Materials of Fissile Subassemblies in Phenix—JEAN-LOUIS SERAN, H TOURON, A MAILLARD, P DUBUISSON, J P HUGOT, E LE BOULBIN, P BLANCHARD, AND M PELLETIER 739 STP1046-EB/May 1990 Author Index Ahlf, Jtirgen, 265-283 Albertini, Carlo, 387-403 Alexander, David J., 361-372 Allen, Charles W., 784-788 Anatharaman, S., 496-524 Asakura, Kentaro,^404-421 B Balakrishnan, K S., 515-523 Beaven, Peter A., 180-198 Bellmann, Dieter, 265-283 Bergmann, Hans-J., 570-587 Bibilashvili, Yuvy K., 753-765 Biermann, Willi K., 769-787 Birtcher, Robert C, 784-811 Bishop, George R., 607-622 Blanchard, P., 739-751 Brager, Howard R., 599-604 Biihrer, Willi, 155-163 Burke, Mary Grace, 107-127 Buswell, JohnT., 127-152 Buttle, David J., 165-179 Cannon, N Scott, 729-738 Cauvin, Richard, 700-713 Chatterjee, Subrata, 496-524 Clarke, W L., 470-486 Corwin, William R., 5-28, 361-372 Czajkowski, Carl J., 441-452 Fohl, Jtirgen, 80-103 Forlani, Mario, 387-403 Frisius, Friedrich, 155-163 Garner, Frank A., 487-494, 527-536, 551569, 599-604, 673-683 Gelles, David S., 453-458, 673-683 Golovanov, Victor, 753-765 Golovnin, Igor S., 753-765 Greenwood, Lawrence R., 633-641 Griesbach, Timothy J., 253-264 Grossbeck, Martin L., 537-549 Gygax, Fredy N., 180-198 H Haggag, Fahmy M., 214-233, 361-372 Hamada, Kazusi, 404-421 Hamilton, Margaret L., 45-54, 487-494, 729-738 Hawthorne, J Russell, 642-670 Hawthorne, J Russell, 55-78 Heinisch, Howard L., 45-54 Herschbach, Kornelius, 570-587 Hetherington, Mark G., 127-152 Hiser, Allen L., 55-78 Hitti, Bassam, 180-198 Hoelke, Carl W., 588-598 Hofman, Gerard L., 784-788, 789-811 Hu, Wan-Liang, 453-458 Huang, Fan-Hsiung, 459-469, 729-738 Hugot, Jean-Pierre, 700-713, 739-751 I-K D-F Del Grande, Angelo, 387-403 Druce, Stephen G., 30-44 Dubuisson, P., 739-751 Dussarte, Daniel, 284-304 Ehrlich, Karl, 769-787 English, Colin A., 127-152 Fissolo, Antoine, 700-713 Copyright © 1990 by ASTM International Iida, Kunihiro, 387-403 Iskander, Shafik K., 5-28, 214-233 Kalashnik, Galina V., 753-765 Kley, Walter, 607-622 Kohyama, Akira, 404-421 Kumar, Arvind S., 487-494 Kussmaul, Kare, 80-103 www.astm.org 814 EFFECTS OF RADIATION ON MATERIALS LeBouIbin, E., 739-751 Levy, Viviane, 700-713 Little, Edward A., 165-179 Lowe, Arthur L Jr., 201-213, 234-249 Lucas, G E., 323-347 Ranganath, S., 470-486 Rehn, Lynn E., 784-788 Rest, Jeffrey, 789-811 Rogers, J., 657-670 Romaneev, Valery V., 753-765 Rowcliffe, Arthur E, 5-28 M Mahmood, Sheikh T., 422-440 Maillard, A., 739-751 Mansur, L K., 537-549 Matsui, Hideki, 404-421 McCabe, Donald E., 214-233, 348-360 McGarry, Emmert D., 642-670 Menke, BlaineH., 214-233 Miannay, Dominique, 284-304 Miller, Michael K., 107-127 Montagnani, Mario, 387-403 Muhling, Gunter, 769-787 Murty, K Linga, 422-440 N-O Nanstad, Randy K., 5-28, 214-233, 361372 Neustroev, Victor S., 753-765 Odette, G Robert, 5-28, 323-347 Ougouag, Abderrafi M., 305-322 Schenck, Alexander, 180-198 Schmitt, Franz, J., 373-384 Schneider, Walter, 570-587 Scruby, Christopher B., 165-179 Seran, Jean-Louis, 739-751 Server, William, 253-264 Shamardin, Valentin K., 753-765 Sinha, Amar, 607-632 Sivaramakrishnan, K S., 496-524 Smith, George D W., 127-152 Solt, Georges, 155-163, 180-198 Soulat, Pierre, 284-304 Srinivasan, Mahaveda, 623-632 Stubbins, James E, 305-322 Tanaka, M P., 537-549 Tavassoli, Ali Asghar, 684-699 Tichler, Paul R., 441-452 Tipping, Philip, 180-198 Touron, H., 739-751 V-Z Pachera, Alberto, 387-403 Parsons, John B., 588-598 Pegram, James W., 234-249 Pelletier, M., 739-751 Perlado, Jose Manuel, 607-622 Phythian, William J., 127-152 Porter, Douglas L., 551-569 Povstyanko, Alexander V, 753-765 Prillinger, Ing G., 642-670 Puigh, Raymond J., 527-536 Van Der Schaaf, Bob, 714-728 Viswanathan, U K., 496-514 Waeber, Waldemar B., 155-163, 180-198 Weeks, John R., 441-452 Weissenberg, Thomas, 80-103 White, M A., 470-486 Williams, John G., 305-322 Wood, Elon L., 551-569 Worrall, Geoffrey M., 127-152 Zimmermann, Ulrich, 180-198 STP1046-EB/May 1990 Subject Index ASTM Test Methods E 8, : 60 E 23, : 60 E 23-86, : 498-499 E 399, : 60 E §13, : 60 E U52, : 60 Atom probe field-ion microscopy (APFIM) instrumentation, 113-114 irradiated alloys, 147 pressure vessel steels, 107-127 selected and random area analysis, 110— 111 small cluster formation, 130-131 thermally aged alloys, 145-147 Atom size, mechanical stress gradients, 302322 Austenitic alloys irradiation creep behavior, 537-549 neutron-induced swelling, 673-683 neutron radiation, 684-699 swelling and creep, 570-586 A105 grade II steel, reactor surveillance testing, 6-28 A212B steel atom probe field-ion microscopy, 107-127 pressure vessel steel tensile properties, 46-51 reactor surveillance testing, 6-28 A302B steel atom probe field-ion microscopy, 107-127 pressure vessel steel tensile properties, 5153 A3336 steel, fluence rate effect studies, 5578 A350 grade LF3, reactor surveillance testing, 7-28 Above core structure, neutron radiation, 684-699 Accelerators, 607-621 Aging, serrated flow, 422-440 Aluminum alloys irradiation, 441-452 neutron dosimetry, 662-670 radiation damage, 633-641 Amorphization catastrophic swelling, 782-788 crystal structure stability, 789-811 Annealing postirradiation, 55-78 reactor surveillance testing, 26-28 20-K irradiation, 419-420 vacuum, 425-428 ASTM Standards A 533, : 218 E 8, : 221 E 23, : 220 E 23-86, : 487-488, 490 E 139, : 715-716 E 185, : 506 E 208, : 221 E 399, : 221, 471 E 813, : 221 Copyright © 1990 by ASTM International B Babcock & Wilcox reactor vessels, correlation models, 237-249 Barkhausen emission, 165-179 Base material recovery, 97-100 RPV mechanical properties, 92-96 Below core structure, neutron radiation, 684-699 Bend bar, fracture resistance, 348-360 Bending physics cantilever beam studies, 593-598 irradiation creep, 588-598 Bismuth facility, neutron dosimetry, 661670 Boiling water reactors fluence rate effects studies, 56-62 fracture toughness evaluation, 470-486 nickel's effect, 323-347 815 www.astm.org 816 EFFECTS OF RADIATION ON MATERIALS Brittle fracture instrumented impact testing, 496-514 vs subcritical crack growth, 319-320 Bubbles, crystal structure stability, 789-811 Buffalo reactor, neutron spectra calculations, 642-655 Burnup catastrophic swelling, 782-788 ring tensile test, 515-524 Calculated-to-experimental (C/E) data, neutron dosimetry, 665-670 Cantilever beam method, irradiation creep, 588-598 Carbides, fine-scale microstructure, 115-117 Catastrophic swelling, high voltage electron microscopy, 782-788 Cementite, fine-scale microstructure, 114— 115 Charged particles, accelerator neutron source, 614-618 Charpy V-notch (CVN) impact testing correlation models, 234-249 Cv and drop-weight transition temperature increases, 373-384 decommissioned reactor materials, 80103 ferritic alloys, 453-458 fluence rate effect studies, 55-78 41 J shifts, 265-283 fracture toughness shifts, 253-264 Heavy Section Steel Technology (HSST), 201-213 impact results, 17-23 irradiation, 369 KK, 214-233 nil-ductility temperature shift, 284-304 surveillance testing, 8-28 swelling, 700-712 three-wire series-arc cladding, 361-372 toughness properties, 84-87 upper shelf energy and specimen size, 487495 Chevron-notched short bar, 471-472 fracture toughness evaluation, 471-472 Cladding fracture resistance, 348-360 fuel pin behavior, 769-781 ring tensile test, 515-524 simulated transient behavior, 729-738 swelling behavior of titanium alloys, 742752 Cleavage fractures instrumented impact testing, 496-514 thermomechanical treatment, 560-569 Cold beam tube, cantilever beam studies, 592-593 Compact specimens, KK curves, 214-233 Compact tension test, fluence rate effect studies, 55-78 Compound materials, radiation damage 633-641 Control rod drive follower (CRDF), thermal fluence effect, 445-452 Copper alloys atom probe field-ion microscopy, 119-123 comparison studies, 265-283 dependence, 277-280 HFIR pressure vessel hardening, 27 Kic curves, 214-233 magnetoacoustic and Barkhausen emission studies, 165-179 Magnox irradiation model, 34-44 muon spin rotation, 180-198 nickel's effect, 323-347 precipitate composition and matrix levels, 147-150 reactor surveillance testing, 7-28 small cluster formation, 127-152 swelling, 599-604 Core-edge models irradiation assemblies, neutron dosimetry, 660-670 neutron spectra, 649-655 neutron spectra calculations, 646-655 Core neutron source, neutron spectra calculations, 649-655 Correlation models, 234-249 irradiation damage, 234-249 upper shelf energy and specimen size, 487495 Corwin's correlation, upper shelf energy and specimen size, 492-493 Crack tip opening displacement (CTOD), high copper welds, 222-223 Creep austenitic stainless steel, 537-549 cantilevered beam method, 588-598 growth, 595-596 irradiation, 527-536, 714-727 near core structures, 684-699 OX16H15M3B steel alloys, 753-765 swelling behavior of titanium alloys, 739752 tensile properties, 387-403 thermomechanical treatment, 551-569 SUBJECT INDEX Critical zone size, mechanical stress gradient effects, 320 Crystal structure stability, 789-811 D Damage rate effects, steel tensile properties, 45-54 Data validity, fracture behavior of ferritic steels, 459-469 Decommissioned reactor materials, embrittlement, 80-103 Deformations, ring tensile test, 515-524 Degradation, tensile and Charpy impact behavior, 361-372 Denitrided mild steel, 422-440 Design codes, neutron radiation, 684-699 Diamond pyramid hardness (DPH), nickel, 323-347 Diffuse elastic neutron scattering technique, 154-163 Diffusion, serrated flow, 422-440 Dislocation density, swelling of copper alloys, 599-604 Displacement damage (DPA), 633-641 near core structures, 684-699 neutron dosimetry, 668-670 reactor surveillance testing, 24-26 Domain wall movement, magnetoacoustic and Barkhausen emission studies, 166-167 Dose rate, surveillance testing, 5-28 Drop-weight specimens, KIC curves, 214-233 D-T fusion cycle, accelerator neutron source, 607-621 Ductile-brittle transition temperature (DBTT) Charpy impact testing, 453-458 Cv and drop-weight increases, 373-384 mechanical stress gradients, 305-322 pressure vessel steel tensile properties, 45-54 radiation damage mechanism, 24-26 upper shelf energy and specimen size, 487495 Ductility irradiation and creep damage, 714-727 serrated flow, 422-440 simulated transient behavior, 729-738 Elastic-plastic fracture mechanics fracture resistance, 348-360 Klc curves, 214-233 817 Electric discharge machining, RPV mechanical properties, 91-100 Elevated temperature irradiation, 408-420 Elongation elevated temperature irradiation, 409-412 ring tensile test, 515-524 Embrittlement C,, and drop-weight transition temperature increases, 373-384 decommissioned reactor materials, 80103 fluence rate effect studies, 55-78 fracture toughness shifts, 253-264 instrumented impact testing, 496-514 Magnox irradiation model, 31-44 mechanical stress gradients, 302-322 neutron spectra calculations, 642-655 nickel, 323-347 nil-ductility temperature shift, 284-304 serrated flow, 422-440 service-irradiation, 67, 71 small cluster formation, 127-152 swelling, 700-712 thermomechanical treatment, 551-569 upper shelf energy and specimen size, 487495 Energy-temperature diagram, irradiation embrittlement, 496-514 Experimental Breeder Reactor (EBR-II) accelerator neutron source, 618-620 fracture behavior, 459-469 irradiation creep behavior, 527-536 neutron-induced swelling, 673-683 simulated transient behavior, 729-738 Fast breeder reactor fuel pin behavior, 769-781 irradiation creep and swelling, 753-765 near core structures, 684-699 swelling behavior of titanium alloys, 740752 Fast Flux Test Facility (FFTF) irradiation creep behavior, 527-536 neutron-induced swelling, 676-683 swelling of copper alloys, 599-604 Fatigue, near core structures, 684-699 FCCI, fuel pin behavior, 774-777 FCMI, fuel pin behavior, 774 Ferritic alloys Charpy impact testing, 453-458 818 EFFECTS OF RADIATION ON MATERIALS Ferritic alloys (cont.) decommissioned reactor materials, 80103 fracture behavior, 459-469 instrumented impact testing, 496-514 neutron-induced swelling, 673-683 specimen size, 487-495 Ferritic/martensitic steels, neutron fluence, 404-421 Field desorption microscopy, 111-112 Fine-scale microstructure, atom probe fieldion microscopy, 107-127 First wall conditions, spallation neutrons, 608-614 Fisher, embrittlement model, HFIR pressure vessel, 32-34 Fission gas release, 777 Fluence rate effects, reactor pressure vessels (RPV), 55-78 Flux cycling, cantilever beam method, 596597 Follow-on irradiation matrix, 72 Forging directionality, decommissioned reactor materials, 80-103 FRACJACK, fracture toughness of stainless steel, 470-486 Fractography, 404-421 Fracture behavior ferritic steels, 459-469 stainless steel clad vessels, 348-360 mechanical stress gradient effects, 302322 Fracture toughness fluence rate effect studies, 55-78 KK curves, 214-233 near core structures, 684-699 nil-ductility temperature shift, 284-304 shifts, 253-264 short rod stainless steel, 470-486 transition temperature shifts, 291-298 Fuel burn up, neutron dosimetry, 662-670 Fuel Cladding Transient Test (FCTT), 730738 Fuel pins swelling, 769-781 titanium alloys, 739-752 Fuel restructuring, fuel pin behavior, 773774 Fusion austenitic stainless steel, 537-549 irradiation creep behavior, 527-536 transmutation nuclide production, 623631 Fusion reactor, fracture behavior of ferritic steels, 459-469 Gas-driven swelling, crystal structure stability, 789-811 Gauge length uncertainty, ring tensile test, 515-524 Geometric models and materials calculations, 643-655 "German plates", 323-347 Grain boundaries interfaces, atom probe field-ion microscopy, 117-119 Gundremmingen KRB-A reactor, 55-78 archive material, 58 follow-on irradiation experiment matrix, 72 materials, 46-47 ME A investigations, 56 phase I verification tests, 58 through-thickness properties, 58-62 through-wall fluence determination, 67 UBR-68 irradiation experiment, 62-67 UBR-78 experiment, 72 UBR-79A experiment, 72-73 UBR-80A experiment, 73-74 UBR vs service-irradiation embrittlement, 67-71 H Hardening magnetoacoustic and Barkhausen emission studies, 165-179 nickel, 323-347 nil-ductility temperature shift, 284-304 precipitation, 180-198 serrated flow, 422-440 small cluster formation, 127-152, 131 tensile strength, 387-403 transmission electron microscopy (TEM), 188-190 Heat-affected-zone (HAZ) surveillance testing results, 89-91 unirradiated materials, 87 Heavy ions, accelerator neutron source, 616 Heavy Section Steel Technology (HSST) Charpy testing, 201-213 KK curves, 214-233 Helium near core structures, 684-699 transmutation nuclide production, 623631 Hexagonal can, swelling behavior of titanium alloys, 739-752 High-energy protons, accelerator neutron source, 617-618 SUBJECT INDEX High-energy transport code (HETC), 625631 transmutation nuclide production, 625631 High Flux Beam Reactor (HFBR), 441-452 High Flux Isotope Reactor (HFIR) accelerator neutron source, 618-620 Charpy impact testing, 453-458 chemical composition, fracture behavior of ferritic steels, 459469 neutron-induced swelling, 676-683 pressure vessel steel tensile properties, 45-54 schematics, 6-7 surveillance testing, 5-28 tensile properties, 8-9 thermal fluence effect, 441-452 U.K Magnox steel irradiation model, 3044 High isotope flux Australian reactor (HIFAR), 424-425 High voltage electron microscopy, catastrophic swelling, 782-788 Hold time, fatigue, 684-699 HT9 stainless steel simulated transient behavior, 729-738 upper shelf energy and specimen size, 487495 Hydrogen, transmutation nuclide production, 623-631 I Imaging atom probe elemental mapping, 111-112 Impact testing comparison studies, 265-283 Cy and drop-weight transition temperature increases, 373-384 near core structures, 684-699 Impact transition temperature shifts, 285291 Impurities, steel, 422-440 Instrumented impact testing, ferritic steels, 496-514 Interstitial elements, serrated flow, 422-440 Ion irradiation, cantilever beam studies, 593-594 Ion simulation, cantilevered beam method, 588-598 Iron alloys ferritic/martensitic steels and, 420 muon spin rotation, 180-198 819 neutron dosimetry, 666-670 small cluster formation, 127-152 Iron-copper alloys magnetoacoustic and Barkhausen emission studies, 165-179 precipitation kinetics, 180-198 Irradiated alloys APFIM, 147 results, 149-152 small angle neutron scattering (SANS), 139-140 small cluster formation, 131 transmission electron microscopy (TEM), 145 Irradiation accelerator neutron source, 607-621 aluminum alloys, 441-452 Barkhausen emission studies, 165-179 cantilevered beam method, 588-598 Charpy impact testing, 369 comparison of 41 J shifts, KTA 3202 and NRC guide 1.99, 265-283 copper alloys, 599-604 creep behavior Austenitic stainless steel, 537-549 ductility, 714-727 fusion heats and steel alloys, 527-536 swelling, 570-586 C and drop-weight transition temperature increase, 373-384 damage calculations, 234-249, 633-641 decommissioned reactor materials, 80103 ferritic/martensitic steels, 404-421 fluence rate effect studies, 55-78 follow-on experiment matrices, 72-74 fracture behavior of ferritic steels, 459-469 resistance, 348-360 stainless steel, 470-486 toughness evaluation, 472-486 toughness shifts, 253-264 Heavy Section Steel Technology (HSST), 201-213 instrumented impact testing, 496-514 KK curves, 214-233 magnetoacoustic studies, 165-179 muon spin rotation, 180-198 near core structures, 684-699 neutron, 428-430, 673-683 neutron dosimetry, 657-670 nickel, 323-347 nil-ductility temperature shift, 284-304 OX16H15M3B steel alloy creep and swelling, 753-765 820 EFFECTS OF RADIATION ON MATERIALS Irradiation (cont.) pressure vessels, 8-28 RPV mechanical properties, 92-96 SANS and DENS techniques, 154-163 serrated flow, 422-440 simulated transient behavior/ 729-738 small cluster formation, 127-152 surveillance testing, 5-28 swelling, 570-586, 673-683, 700-712, 739-752 tensile properties, 367-368, 387-403 thermomechanical treatment, 551-569 300 K steel, 406-408 three-wire series-arc cladding, 361-372 titanium alloys, 739-752 20 K steel, 416-419 U.K Magnox steel irradiation model, 3044 unirradiated metal state, 81-87 Irradiation assisted stress corrosion cracking (IASCC), 470-486 J-K J-R curve, fluence rate effects studies, 5578 K]c curves fracture toughness shifts, 258-263 high copper welds, 214-233 KTA 3202 tests, 265-283 A-values, SANS and DENS techniques, 154-163 Lateral expansion, instrumented impact testing, 496-514 Light ions, accelerator neutron source, 616 Light-water reactors (LWR) fracture toughness of stainless steel, 470486 KK curves, 214-233 surveillance testing, 15-16 Linde 80 weld metal correlation models, 234-249 Heavy Section Steel Technology (HSST), 201-213 Linear elastic fracture mechanics (LEFM) fracture toughness evaluation, 472-474 Klc curves, 217-233 Liquid metal fast breeder reactor (LMFBR) fracture toughness evaluation, 483-484 irradiation and creep damage, 714-727 Liquid metal reactors, simulated transient behavior, 729-738 Lithium dioxide, radiation damage, 633-641 Load Point Opening (LPO) gauge, 472-486 Load-temperature diagram, 496-514 Locking, serrated flow, 422-440 Louden's correlation, upper shelf energy and specimen size, 491-493 Low cycle fatigue near core structures, 684-699 tensile properties, 387-403 Low dose neutron irradiation, 684-699 Luders strain, serrated flow, 430-438 M Magnetoacoustic emission, 165-179 Magnetostriction, 166-167 Manganese precipitates, atom probe fieldion microscopy, 119-120 Martensitic alloys, Charpy impact testing, 453-458 Materials, neutron spectra calculations, 642655 Materials test reactors (MTR), 323-347 Matrix chemistry, atom probe field-ion microscopy, 123-124 Mechanical properties creep damage and neutron irradiation, 716-727 damage and, 387-403 near core structures, 684-699 nickel, 323-347 simulated transient behavior, 729-738 Mechanical stress gradient effects, 302-322 14-MeV neutrons, irradiation temperatures, 404-421 Microscopy, creep damage and neutron irradiation, 716-727 Microstructure ferritic/martensitic steels, 404-421 nickel, 323-347 pressure vessel steels, 107-127 thermal aging, 412-416 three-wire series-arc cladding, 363-372 Molybdenum carbide, fine-scale microstructure, 114-115 Muon spin rotation, 180-198 N Necking, ring tensile test, 522-524 Neutron cross sections, calculations, 643655 Neutron disometry fluence rate effect studies, 55-78 irradiation, 657-670 SUBJECT INDEX Neutron economy, 607-621 Neutron flow, U.K Magnox steel irradiation model, 30-44 Neutron fluence accelerator neutron source, 607-621 atom probe field-ion microscopy, 107-127 cantilevered beam method, 588-598 Charpy impact testing, 453-458 comparison studies, 265-283, 276-277 correlation models, 236-237 creep damage and neutron irradiation, 716-727 decommissioned reactor materials, 87-89 ferritic/martensitic steels, 404-421 Heavy Section Steel Technology (HSST), 201-213 irradiation creep behavior, 527-536 K,c curves, 214-233 Magnox irradiation model, 32-44 neutron dosimetry, 657-670 neutron-induced swelling, 676-683 neutron spectra calculations, 642-655 nickel's effect, 323-347 radiation damage mechanism, 24-27 rate effects studies, 55-78 reactor pressure vessels (RPV) studies, 55-78 serrated flow, 428-430 surveillance testing, 8-28 swelling behavior of titanium alloys, 739752 tensile and Charpy impact behavior, 361— 372 thermomechanical treatment, 551-569 through-wall determination, 67-70 Neutron flux cantilevered beam method, 588-598 neutron-irradiated pressure vessel steel, 45-54 nickel's effect, 323-347 pressure vessel steel tensile properties, 46-54 radiation damage mechanism, 24-27 surveillance testing, 8-28 Neutron generators, 607-621 Neutron reaction rates, 665-670 Neutron source facilities, 607-621 Neutron spectra calculations neutron dosimetry, 657-670 neutron fluence, 642-655 Neutron spectrum pressure vessel steel tensile properties, 45-54 reactor surveillance testing, 8-28 Neutron transport theory, 607-621 821 Nickel alloys comparison studies, 265-283 dependence, 280-282 irradiation hardening, 323-347 neutron-induced swelling, 673-683 20NiMoCr26 steel, 55-78 Nil-ductility transition temperature (NDTT) Charpy energy level indexing, 10-15 C and drop-weight increases, 373-384 fracture toughness shifts, 258-263 French test reactor experiments, 284-304 K1C curves, 214-233 mechanical stress gradients, 305-322 surveillance testing, 7-28 Nitrides, fine-scale microstructure, 115-117 Nitrogen, serrated flow, 430-438 Nondestructive testing KK curves, 214-233 magnetoacoustic and Barkhausen emission studies, 165-179 Notch ductility, fluence rate effect studies, 55-78 Nozzles cross-section, reactor surveillance testing, 7-28 NRC Regulatory Guide 1.99, 254-255, 265283 Nuclear fragments, 607-621 Nucleation, 180-198 O Oak Ridge Reasearch Reactor (ORR), surveillance testing, 7-28 One-dimensional analyses, neutron spectra, 653-655 Optical beam path, cantilever beam studies, 589 Out-of-core metallurgy irradiation, 657-670 OX16H15M3B steel, 753-765 Oxide fuel behavior, 770-781 Perturbation calculations, neutron dosimetry, 660-670 Phosphorus, atom probe field-ion microscopy, 123 Pin deformation, swelling behavior of titanium alloys, 742-743 Plastic flow, catastrophic swelling, 782-788 Point defects, mechanical stress gradient effects, 309-311 POSAP studies, thermally aged alloys, 145147 822 EFFECTS OF RADIATION ON MATERIALS Postirradiation heat treatment, 80-103 Postweld heat treatment (PWHT), 361-372 Power reactor data, Charpy data comparisons, 209-212 Precipitation kinetics, 180-198 Precipitation-strengthened alloys, 673-683 Precrack specimens, upper shelf energy, 487-495 Prediction curves, correlation models, 237240 Preferential absorption and glide, 583-586 Pressure vessel steel atom probe field-ion microscopy, 107-127 comparison studies, 265-283 C and drop-weight increases, 373-384 fluence rate effect studies, 55-78 fracture toughness shifts, 253-264 magnetoacoustic and Barkhausen emission studies, 165-179 mechanical stress gradients, 302-322 neutron-irradiation of, 45-54 nickel, 323-347 nil-ductility temperature shift, 284-304 tensile and Charpy impact behavior, 361372 Pressurized thermal shock (PTS), fracture resistance, 348-360 Pressurized tube experiments, swelling and creep, 570-586 Pressurized water reactor (PWR), 30-44 Prime Candidate Alloys (PCA), accelerator neutron source, 607-621 Radiation damage mechanism pressure vessels, 23-27 tensile and Charpy impact behavior, 361— 372 Radiation-enhanced diffusion, 302-322 Radiation-induced segregation, 302-322 /?-curve, fracture resistance, 348-360 Reactor pressure vessel (RPV) correlation models, 234-249 decommissioned reactor materials, 80103 DENS testing, 154-163 fracture resistance, stainless teel cladding, 348-360 Heavy Section Steel Technology (HSST), 201-213 KIC curves, 214-233 mechanical properties, 91-100 SANS testing, 154-163 surveillance testing, 5-28 U.K Magnox steel irradiation model, 3044 Reference nil-ductility temperature (RTNDT), 214-249 Reference toughness, 253-264 Refractory alloys, neutron-induced swelling, 673-683 Residual analysis, nil-ductility temperature shift, 289-291 Ring tension test, 515-524 Root-sum-of-squares (RSS) rule, nickel's effect, 344-347 RTNS-II irradiation temperatures, 404-421 Scanning electron microscopy (SEM) ferritic/martensitic steels, 404-421 thermomechanical treatment, 560-565 Self ions, accelerator neutron source, 6i6 Serrated flow, irradiation, 422-440 Service-irradiation embrittlement, UBR test reactor, 67, 71 Short rod method, fracture toughness of stainless steel, 470-486 Silicon swelling arid creep, 570-586 Simulation studies catastrophic swelling, 782-788 transmutation nuclide production, 623631 Sink treatment, solute and point defects, 309-311 Size effect, upper shelf energy, 487-495 Small angle neutron scattering (SANS) DENS testing, 154-163 irradiated model alloys, 139-140 small cluster formation, 128-130 thermally aged alloys, 131-140 Soderberg theorem, 570-586 Softening, crystal structure stability, 789811 Solid transmutation product, 626-631 Solute defects, mechanical stress gradient effects, 309-311 Spallation fragments, 607-621 neutron sources, 607-621 transmutation nuclide production, 623631 Specimen mirrors, cantilever beam studies, 589-590 Specimen size, upper shelf energy of ferritic steel, 487-495 SPECOMP computer code, radiation damage calculations, 633-641 SUBJECT INDEX fracture toughness, 470-486 fuel pin behavior, 769-781 irradiation creep and swelling, 753-765 radiation damage, 633-641 tensile and Charpy impact behavior, 361372 Standpipe experiments neutron dosimetry, 661-670 neutron spectra calculations, 648-655 Steel alloys Charpy impact testing, 453-458 comparison studies, 265-283 irradiation creep behavior, 527-536 Magnox irradiation model, 41-44 neutron-induced swelling, 673-683 Strain irradiation and creep damage, 539-549, 714-727 rates, 387-403 Strain-aging, serrated flow, 430-438 Strength, elevated temperature irradiation, 408-409 Stress irradiation creep behavior, 539-549 mechanical stress gradients, 302-322 swelling and creep, 570-586 Stress-driven flow model, 308-309 Stress-enhanced swelling, 570-586 Stress-induced preferential absorption (SIPA) irradiation behavior, 540-549 swelling and creep, 583-586 Subcritical crack growth, brittle fracture, 319-320 Submerged-arc welds correlation models, 234-249 Heavy Section Steel Technology (HSST), 201-213 KK curves, 214-233 Surface cracks, 348-360 Surveillance testing decommissioned reactor materials, 80103 High Flux Isotope Reactor (HFIR), 5-28 Klc curves, 214-233 Magnox irradiation model, 32-44 Swelling catastrophic, 782-788 copper alloys, 599-604 crystal structure stability, 789-811 fuel pin behavior, 769-781 in-pile creep, 570-586 irradiation, 700-712 irradiation creep behavior, 527-536 neutron-induced, 673-683 823 OX16H15M3B steel alloys, 753-765 thermomechanical treatment, 553-558 titanium alloys, 739-752 Tantalum oxide radiation damage, 633-641 Temperatures ferritic/martensitic steels, 404-421 swelling, 705-712 Tensile properties creep, 714-727 damage, 387-403 ferritic/martensitic steels, 404-421 fracture toughness evaluation, 480-482 irradiation, 367-368 near core structures, 684-699 neutron-irradiated pressure vessel steel, 45-54 ring tensile test, 515-524 swelling, 700-712 unirradiated materials, 83-84 Tension testing irradiation and creep damage, 714-727 three-wire series-arc cladding, 361-372 Test reactor irradiation, 642-655 Thermal control, ferritic/martensitic steels, 404-421 Thermal fluence effect, 441-452 Thermal gradient, swelling behavior of titanium alloys, 739-752 Thermally aged alloys APFIM, 145-147 elevated temperatures, 412-416 matrix copper levels and precipitate composition, 148-152 particle structure, size and number density, 148 small angle neutron scattering (SANS), 131-140 small cluster formation, 127-152 transmission electron microscopy (TEM), 140-145 Thermomechanical treatment, 316 stainless steel, 551-569 Three-wire series-arc welds, 361-372 Through-thickness properties, 58-62 Through-wall fluence determination, 67-70 Titanium alloys, swelling, 700-712, 739-752 Toughness ferritic steel fracture, 459-469 near core structures, 684-699 three-wire series-arc cladding, 361-372 unirradiated materials, 84-87 824 EFFECTS OF RADIATION ON MATERIALS Transition temperature base material irradiation behavior, 93-96 comparison studies, 265-283 C, and drop-weight increases, 373-384 dependence on calculated shifts, 273-276 fracture toughness shifts, 253-264 instrumented impact testing, 496-514 nil-ductility temperature shift, 284-304 observed vs calculated, 272-273 Transmission electron microscopy (TEM) ferritic/martensitic steels, 404-421 hardness data, 188-190 irradiated alloys, 145 small cluster formation, 128, 130 swelling behavior of titanium alloys, 751: 752 thermally aged alloys, 140-145 Transmutation product, 623-631 Transport calculations, 642-655 Trepans base material recovery, 97-103 reactor pressure vessel materials, 81-82 Triple-axis geometry, SANS and DENS techniques, 154-163 Two-dimensional calculations, neutron spectra, 649-655 Type 304 stainless steel, 714-727 irradiation and creep damage, 714-727 Type 304L stainless steel, 684-699 Type 316 stainless steel damage, 387-403 simulated transient behavior, 737-738 thermomechanical treatment, 551-569 Type 316L stainless steel, 684-699 U UCSB plates, nickel's effect, 323-347 U.K Magnox steel irradiation model, 30-44 Ultimate tensile strength, 387-403 Understabilization, swelling and creep, 570586 Unirradiated metal state, irradiation embrittlement, 81-87 Upper shelf energy (USE) base material irradiation behavior, 93-96 Charpy impact testing, 453-458 correlation models, 234-249 drop development, 247-249 specimen size, 487-495 Uranium silicide catastrophic swelling, 782-788 crystal structure stability, 789-811 Vacancy density, Magnox irradiation model, 32-44 Vacuum annealing, 425-428 Voce's equation, ring tensile test, 515-524 Void swelling, thermomechanical treatment, 551-569 W Welds base material irradiation behavior, 96-97 correlation models, 234-249 metal chemical composition, 202-203 submerged-arc, 202-213 surveillance testing, 16-17 unirradiated materials, 84-87 Y-Z Yield strength instrumented impact testing, 496-514 neutron-irradiated pressure vessel steel, 45-54 nil-ductility temperature shift, 284-304 transition temperature shifts, 298-302 Yield stress changes, nickel's effect, 336-347 Zirconium alloys irradiation creep, 588-598 ring tensile test, 515-524