TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy x[.]
TỐN PDF LATEX TRẮC NGHIỆM ƠN THI MƠN TỐN THPT (Đề thi có 10 trang) Thời gian làm bài: 90 phút (Không kể thời gian phát đề) Mã đề thi 1 − xy = 3xy + x + 2y − Tìm giá trị nhỏ x + 2y Pmin P = x + √ y √ √ √ 18 11 − 29 11 − 11 + 19 11 − 19 A Pmin = B Pmin = C Pmin = D Pmin = 21 9 Câu Trong câu sau đây, nói nguyên hàm hàm số f xác định khoảng D, câu sai? Câu [12210d] Xét số thực dương x, y thỏa mãn log3 (I) F nguyên hàm f D ∀x ∈ D : F (x) = f (x) (II) Nếu f liên tục D f có ngun hàm D (III) Hai nguyên hàm D hàm số sai khác hàm số A Câu (II) sai B Câu (III) sai C Câu (I) sai 1−x Câu [2] Tổng nghiệm phương trình A − log3 B − log2 !x =2+ C log2 Câu Khối đa diện sau có mặt tam giác đều? A Tứ diện B Bát diện C Nhị thập diện Z x a Câu Cho I = dx = + b ln + c ln d, biết a, b, c, d ∈ Z √ d 4+2 x+1 P = a + b + c + d bằng? A P = 28 B P = −2 C P = 16 2−n Câu Giá trị giới hạn lim n+1 A B C D Khơng có câu sai D − log2 D Thập nhị diện a phân số tối giản Giá trị d D P = D −1 Câu [3-1212h] Cho hình lập phương ABCD.A0 B0C D0 , gọi E điểm đối xứng với A0 qua A, gọi G la trọng tâm tam giác EA0C Tính tỉ số thể tích k khối tứ diện GA0 B0C với khối lập phương ABCD.A0 B0C D0 1 1 A k = B k = C k = D k = 15 18 Câu [1] Đạo hàm làm số y = log x ln 10 1 A y0 = B y0 = C D y0 = x ln 10 x 10 ln x x Câu [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% tháng Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau tháng, người lĩnh số tiền (cả vốn lẫn lãi) gần với số tiền đây, khoảng thời gian người khơng rút tiền lãi suất khơng thay đổi? A 102.423.000 B 102.016.000 C 102.424.000 D 102.016.000 Câu 10 [1-c] Giá trị biểu thức log0,1 102,4 A 0, B −7, C 72 √ Câu 11 [1] Biết log6 a = log6 a A 36 B 108 C D 7, D Trang 1/10 Mã đề Câu 12 [1] Đạo hàm hàm số y = x A y0 = x ln Câu 13 Tính lim x→+∞ B y0 = x ln x C y0 = ln D y0 = x ln x x−2 x+3 D −3 C − Câu 14 Cho z là√nghiệm phương trình x2 + x + = Tính P =√z4 + 2z3 − z −1 − i −1 + i A P = B P = C P = D P = 2i 2 Câu 15 Khối đa diện loại {5; 3} có số cạnh A B 30 C 12 D 20 A B Câu 16 Cho √ số phức z thỏa mãn |z + 3| = |z − 2i| = |z − 2√− 2i| Tính |z| B |z| = 17 C |z| = 17 D |z| = 10 A |z| = 10 mx − đạt giá trị lớn [−2; 6] Câu 17 Tìm m để hàm số y = x+m A 26 B 34 C 45 D 67 Câu 18 Cho hàm số y = x3 − 2x2 + x + !Mệnh đề đúng? ! 1 A Hàm số nghịch biến khoảng ; B Hàm số đồng biến khoảng ; 3 ! C Hàm số nghịch biến khoảng −∞; D Hàm số nghịch biến khoảng (1; +∞) Câu 19 [2] Tổng nghiệm phương trình x − 12.3 x + 27 = A 10 B 12 C 27 D Câu 20 [2] Đạo hàm hàm số y = x ln x A y0 = ln x − B y0 = + ln x D y0 = − ln x C y0 = x + ln x √ Câu 21 [1] Cho a > 0, a , Giá trị biểu thức loga a 1 A B −3 C − 3 Câu 22 Mệnh đề sau sai? A Mọi hàm số liên tục (a; b) có nguyên hàm (a; b) D Z B Nếu F(x) nguyên hàm f (x) (a; b) C số f (x)dx = F(x) + C C F(x) nguyên hàm f (x) (a; b) ⇔ F (x) = f (x), ∀x ∈ (a; b) !0 Z D f (x)dx = f (x) Câu 23 [2-c] Giá trị lớn hàm số y = x(2 − ln x) đoạn [2; 3] A B −2 + ln C − ln D e Câu 24 [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% năm Biết khơng rút tiền khỏi ngân hàng sau năm, số tiền lãi nhập vào vốn ban đầu Sau năm rút lãi người thu số tiền lãi A 70, 128 triệu đồng B 50, triệu đồng C 20, 128 triệu đồng D 3, triệu đồng Câu 25 [12212d] Số nghiệm phương trình x−3 x−2 − 2.2 x−3 − 3.3 x−2 + = A B C Vô nghiệm D Câu 26 [2] Tích tất nghiệm phương trình (1 + log2 x) log4 (2x) = 1 A B C D Trang 2/10 Mã đề x3 − Câu 27 Tính lim x→1 x − A −∞ B +∞ C D Câu 28 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = − x y = x 11 B C D A 2 Câu 29 [2] Tập xác định hàm số y = (x − 1) A D = R B D = (1; +∞) C D = R \ {1} D D = (−∞; 1) ! 1 Câu 30 [3-1131d] Tính lim + + ··· + 1+2 + + ··· + n A B +∞ C D 2 [ = 60◦ , S O Câu 31 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh a Góc BAD vng góc √ √ với mặt đáy S O = a.√Khoảng cách từ A đến (S BC) √ 2a 57 a 57 a 57 B C a 57 A D 17 19 19 Câu 32 Cho hình chóp S ABC có đáy ABC tam giác vuông cân A với AB = AC = a, biết tam giác S AB cân S nằm mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) góc 45◦ Thể tích khối chóp S ABC a3 a3 a3 C D A a3 B 24 12 Câu 33 Thể tích khối chóp có diện tích đáy S chiều cao h 1 A V = S h B V = 3S h C V = S h D V = S h x+2 đồng biến khoảng Câu 34 Có giá trị nguyên tham số m để hàm số y = x + 5m (−∞; −10)? A B C Vô số D Z ln(x + 1) Câu 35 Cho dx = a ln + b ln 3, (a, b ∈ Q) Tính P = a + 4b x2 A B C D −3 Câu 36 Cho lăng trụ ABC.A0 B0C có cạnh đáy a Cạnh bên 2a Thể tích khối lăng trụ ABC.A0 B0C √ √ a3 a3 a3 B C a D A Câu 37 [3-1211h] Cho khối chóp S ABC có cạnh bên a mặt bên hợp với đáy góc 45◦ Tính thể tích khối chóp S ABC√ theo a √ √ a3 a3 15 a3 15 a3 A B C D 25 25 Câu 38 [2] Cho hàm số f (x) = ln(x4 + 1) Giá trị f (1) ln A B C D 2 Câu 39 [2] Cho hình chóp S ABCD có đáy hình vng cạnh a, S A ⊥ (ABCD) S A = a Khoảng cách hai đường thẳng BD S C √ √ √ √ a a a A a B C D Câu 40 Khối đa diện thuộc loại {3; 5} có đỉnh, cạnh, mặt? A 20 đỉnh, 30 cạnh, 12 mặt B 12 đỉnh, 30 cạnh, 20 mặt C 20 đỉnh, 30 cạnh, 20 mặt D 12 đỉnh, 30 cạnh, 12 mặt Trang 3/10 Mã đề Câu 41 [2] Cho hàm số f (x) = x ln2 x Giá trị f (e) A 2e + B 2e C D e a + , với a, b ∈ Z Giá trị a + b b ln A B C D x+3 Câu 43 [2D1-3] Có giá trị nguyên tham số m để hàm số y = nghịch biến khoảng x−m (0; +∞)? A B Vô số C D Câu 42 [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = [ = 60◦ , S A ⊥ (ABCD) Câu 44 Cho hình chóp S ABCD có đáy ABCD hình thoi cạnh a góc BAD Biết rằng√ khoảng cách từ A đến cạnh S C a Thể tích khối√chóp S ABCD √ √ a3 a3 a3 3 C B a D A 12 Câu 45 [4] Cho lăng trụ ABC.A0 B0C có chiều cao đáy tam giác cạnh Gọi M, N P tâm mặt bên ABB0 A0 , ACC A0 , BCC B0 Thể tích khối đa diện lồi có đỉnh A, B, C, M, √ √ N, P √ √ 20 14 B C D A 3 Câu 46 khẳng định sau, khẳng định sai? Z Trong u0 (x) dx = log |u(x)| + C A u(x) B F(x) = + tan x nguyên hàm hàm số f (x) = + tan2 x C F(x) = − cos x nguyên hàm hàm số f (x) = sin x D Nếu F(x) nguyên hàm hàm số f (x) nguyên hàm hàm số f (x) có dạng F(x) + C, với C số Câu 47 Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C D0 , biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4) Tìm tọa độ đỉnh A0 A A0 (−3; 3; 3) B A0 (−3; 3; 1) C A0 (−3; −3; 3) D A0 (−3; −3; −3) π Câu 48 [2-c] Giá trị lớn hàm số y = e x cos x đoạn 0; √ √ π4 π6 π3 A e B e C e D 2 Câu 49 Phép đối xứng qua mp(P) biến đường thẳng d thành A d song song với (P) B d ⊥ P C d nằm P D d nằm P d ⊥ P Câu 50 Cho hình chóp S ABCD có cạnh đáy 2a Mặt bên hình chóp tạo với đáy góc 60◦ Mặt phẳng (P) chứa cạnh AB qua trọng tâm G tam giác S AC cắt S C, S D M, n Thể tích khối√chóp S ABMN √ √ √ a3 4a3 2a3 5a3 A B C D 3 Z Câu 51 Cho xe2x dx = ae2 + b, a, b số hữu tỷ Tính a + b C Câu 52 Mỗi đỉnh hình đa diện đỉnh chung A Bốn mặt B Năm mặt C Ba mặt A B D D Hai mặt Trang 4/10 Mã đề Câu 53 Tính lim n+3 A B C D Câu 54 Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) (S AC) vng góc với (S BC) √ Thể tích khối chóp S 3.ABC √ √ √ a a3 a3 a3 B C D A 12 12 x2 − Câu 55 Tính lim x→3 x − A −3 B C +∞ D Câu 56 Khẳng định sau đúng? A Hình lăng trụ tứ giác hình lập phương B Hình lăng trụ đứng hình lăng trụ C Hình lăng trụ có đáy đa giác hình lăng trụ D Hình lăng trụ đứng có đáy đa giác hình lăng trụ Câu 57 Cho a số thực dương α, β số thực Mệnh đề sau sai? α aα C aα bα = (ab)α D aα+β = aα aβ A aαβ = (aα )β B β = a β a Câu 58 Cho khối chóp S ABC √ có đáy ABC tam giác cạnh a Hai mặt bên (S AB) (S AC) Thể tích khối chóp S ABC√là vng góc√với đáy S C = a √ √ 3 2a a a3 a3 A B C D 12 Câu 59 Khối đa diện có số đỉnh, cạnh, mặt nhất? A Khối lăng trụ tam giác B Khối bát diện C Khối tứ diện D Khối lập phương Câu 60 Cho khối chóp có đáy n−giác Mệnh đề sau đúng? A Số đỉnh khối chóp số cạnh khối chóp B Số cạnh khối chóp số mặt khối chóp C Số đỉnh khối chóp số mặt khối chóp D Số cạnh, số đỉnh, số mặt khối chóp Câu 61 [3-12211d] Số nghiệm phương trình 12.3 x + 3.15 x − x = 20 A Vô nghiệm B C D Câu 62 [3] Cho hình chóp S ABCD có đáy ABCD hình thoi tâm O, cạnh vng góc √ với mặt đáy S O = a Khoảng cách từ O đến (S√BC) √ 2a 57 a 57 B a 57 C D A 19 19 12 + 22 + · · · + n2 Câu 63 [3-1133d] Tính lim n3 A +∞ B C D Câu 64 Khối đa diện loại {5; 3} có số mặt A 30 B 20 C D Câu 65 Khối đa diện loại {4; 3} có tên gọi gì? A Khối bát diện B Khối tứ diện − n2 Câu 66 [1] Tính lim bằng? 2n + 1 A B [ = 60◦ , S O a Góc BAD √ a 57 17 12 C Khối lập phương D Khối 12 mặt C D − Trang 5/10 Mã đề d = 30◦ , biết S BC tam giác Câu 67 [3] Cho hình chóp S ABC có đáy tam giác vuông A, ABC cạnh a √ mặt bên (S BC) vng √ góc với mặt đáy Khoảng cách √ từ C đến (S AB) bằng√ a 39 a 39 a 39 a 39 B C D A 16 26 13 ln2 x m Câu 68 [3] Biết giá trị lớn hàm số y = đoạn [1; e3 ] M = n , n, m x e số tự nhiên Tính S = m2 + 2n3 A S = 135 B S = 22 C S = 24 D S = 32 Câu 69 [2] Tổng nghiệm phương trình x −4x+5 = A B C D x+2 Câu 70 Tính lim bằng? x→2 x A B C D √ √ Câu 71 Phần thực√và phần ảo số √ phức z = − − 3i √l √ A Phần thực √2, phần ảo − √3 B Phần thực −√1, phần ảo − √3 C Phần thực − 1, phần ảo D Phần thực − 2, phần ảo − Câu 72 [3-1213h] Hình hộp chữ nhật khơng có nắp tích 3200 cm3 , tỷ số chiều cao chiều rộng Khi tổng mặt hình nhỏ nhất, tính diện tích mặt đáy hình hộp A 120 cm2 B 160 cm2 C 160 cm2 D 1200 cm2 Câu 73 Khối đa diện loại {3; 4} có số cạnh A B 12 C 10 D Câu 74 Cho hình chóp S ABCD có đáy ABCD hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy góc 45◦ AB = 3a, BC = 4a Thể tích khối chóp S ABCD √ 10a D 10a3 A 20a3 B 40a3 C Câu 75 [4-1242d] Trong tất số phức z thỏa mãn |z − + 2i| = |z + − 4i| Tìm giá trị nhỏ môđun z √ √ √ √ 13 A 13 B C 26 D 13 Câu 76 [1227d] Tìm ba số nguyên dương (a, b, c) thỏa mãn log + log(1 + 3) + log(1 + + 5) + · · · + log(1 + + · · · + 19) − log 5040 = a + b log + c log A (1; 3; 2) B (2; 4; 6) C (2; 4; 3) D (2; 4; 4) Câu 77 Khi tăng độ dài tất cạnh khối hộp chữ nhật lên gấp ba thể tích khối hộp tương ứng sẽ: A Tăng gấp lần B Tăng gấp 27 lần C Tăng gấp 18 lần D Tăng gấp lần log7 16 Câu 78 [1-c] Giá trị biểu thức log7 15 − log7 15 30 A B −4 C −2 D Câu 79 Khối đa diện loại {3; 5} có số đỉnh A 20 B 12 C 30 D Câu 80 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục đoạn [a; b] có đạo hàm đoạn (II) Mọi hàm số f (x) liên tục đoạn [a; b] có nguyên hàm đoạn Trong hai khẳng định A Cả hai sai B Chỉ có (II) C Cả hai D Chỉ có (I) Trang 6/10 Mã đề 1 1 Câu 81 Tính lim + + ··· + 1.2 2.3 n(n + 1) A B ! C D Câu 82 Hình hộp chữ nhật có ba kích thước khác có mặt phẳng đối xứng? A mặt B mặt C mặt D mặt Câu 83 Tìm giá trị lớn chất hàm số y = x3 − 2x2 − 4x + đoạn [1; 3] 67 A −4 B −7 C D −2 27 Câu 84 [4-1243d] Trong tất số phức z thỏa mãn hệ thức |z − + 3i| = |z − − 5i| Tìm giá trị nhỏ |z + + i| √ √ √ √ 12 17 C A 34 B D 68 17 tan x + m nghịch biến khoảng Câu 85 [2D1-3] Tìm giá trị thực tham số m để hàm số y = m tan x + π 0; A [0; +∞) B (−∞; 0] ∪ (1; +∞) C (−∞; −1) ∪ (1; +∞) D (1; +∞) Câu 86 Cho hai đường thẳng d d0 cắt Có phép đối xứng qua mặt phẳng biến d thành d0 ? A Khơng có B Có C Có hai D Có vơ số Câu 87 Phát biểu sau sai? = n C lim qn = (|q| > 1) D lim k = n Câu 88 Cho hình√ chóp S ABCD có đáy ABCD hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD),√S D = a Thể tích khối chóp S ABCD √ √ 3 √ a a3 a 15 B a3 D A C 3 cos n + sin n Câu 89 Tính lim n2 + A B C +∞ D −∞ Câu 90 [3-12217d] Cho hàm số y = ln Trong khẳng định sau đây, khẳng định đúng? x + A xy0 = −ey − B xy0 = ey + C xy0 = −ey + D xy0 = ey − A lim un = c (un = c số) B lim 0 0 Câu 91.√ [2] Cho hình lâp phương √ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC √ a a a a A B C D 2 Câu 92 Dãy số sau có giới hạn khác 0? sin n A √ B n n C n D n+1 n Câu 93 Khối đa diện thuộc loại {3; 4} có đỉnh, cạnh, mặt? A đỉnh, 12 cạnh, mặt B đỉnh, 12 cạnh, mặt C đỉnh, 12 cạnh, mặt D đỉnh, 12 cạnh, mặt √ Câu 94 [2] Phương trình log4 (x + 1)2 + = log √2 − x + log8 (4 + x)3 có tất nghiệm? A nghiệm B Vô nghiệm C nghiệm D nghiệm Trang 7/10 Mã đề √ Câu 95 [12220d-2mh202047] Xét số thực dương a, b, x, y thỏa mãn a > 1, b > a x = by = ab Giá trị " đây? ! " nhỏ! biểu thức P = x + 2y thuộc tập 5 ;3 B (1; 2) C 2; D [3; 4) A 2 √ Câu 96 [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) x − m = (m tham số thực) Có tất giá trị nguyên dương m để phương trình cho có nghiệm phân biệt? A Vô số B 62 C 64 D 63 Câu 97 [4-1214h] Cho khối lăng trụ ABC.A0 B0C , khoảng cách từ √ C đến đường thẳng BB 2, khoảng 0 cách từ A đến đường thẳng BB CC √ 3, hình chiếu vng góc A lên mặt phẳng (A0 B0C ) trung điểm M B0C A0 M = Thể tích khối lăng trụ cho √ √ A B C D Câu 98 Trong không gian, cho tam giác ABC có đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) hình chiếu B, C lên cạnh! AC, AB Tọa độ hình chiếu ! ! A lên BC A ; 0; B ; 0; C ; 0; D (2; 0; 0) 3 Câu 99 [3-1122h] Cho hình lăng trụ ABC.A0 B0C có đáy tam giác cạnh a Hình chiếu vng góc A0 lên √ mặt phẳng (ABC) trung với tâm tam giác ABC Biết khoảng cách đường thẳng AA a Khi thể tích khối lăng trụ BC √ √ √ √ a3 a3 a3 a3 A B C D 24 36 12 Câu 100 Nếu hình chóp có chiều cao cạnh đáy tăng lên n lần thể tích tăng lên? A 2n2 lần B n3 lần C n3 lần D 2n3 lần Câu 101 √ Thể tích tứ diện √cạnh a √ √ 3 a a a3 a3 A B C D 12 Câu 102 [1231d] Hàm số f (x) xác định, liên tục R có đạo hàm f (x) = |x − 1| Biết f (0) = Tính f (2) + f (4)? A 12 B 11 C 10 D Câu 103 [4-c] Xét số thực dương x, y thỏa mãn x + 2y = Khi đó, giá trị lớn biểu thức P = (2x2 + y)(2y2 + x) + 9xy 27 A 27 B 12 C 18 D Câu 104 [2] Cho hình hộp chữ nhật ABCD.A0 B0C D0 có AB = a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường √ √ √ √ thẳng BD abc b2 + c2 c a2 + b2 a b2 + c2 b a2 + c2 A √ B √ C √ D √ a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 a2 + b2 + c2 Câu 105 [1232d-2] Trong khẳng định đây, có khẳng định đúng? (1) Mọi hàm số liên tục [a; b] có đạo hàm [a; b] (2) Mọi hàm số liên tục [a; b] có nguyên hàm [a; b] (3) Mọi hàm số có đạo hàm [a; b] có nguyên hàm [a; b] Trang 8/10 Mã đề (4) Mọi hàm số liên tục [a; b] có giá trị lớn nhất, giá trị nhỏ [a; b] A B C D Câu 106 [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + Tìm giá trị tham số m để hàm số nghịch biến R A (−∞; −2] ∪ [−1; +∞) B (−∞; −2) ∪ (−1; +∞) C −2 < m < −1 D −2 ≤ m ≤ −1 Câu 107 Hàm số y = −x3 + 3x2 − đồng biến khoảng đây? A R B (0; 2) C (−∞; 1) Câu 108 Giá trị lớn hàm số y = A −5 B D (2; +∞) 2mx + 1 đoạn [2; 3] − m nhận giá trị m−x C −2 D Câu 109 hạn 0? !n Dãy số sau có !giới n B A 3 !n C e !n D − Câu 110 √ số phức z thỏa mãn |z − i| = Tìm giá trị lớn |z| √ [4-1246d] Trong tất A B C D x Câu 111 [2] √ + 1)2 [0; 1] √ Tìm m để giá trị nhỏ hàm số y = 2x + (m A m = ± B m = ±3 C m = ± D m = ±1 Câu 112 [2-c] Giá trị lớn hàm số y = xe−2x đoạn [1; 2] B √ C A 2e e e D e2 D Câu 113 [1] Hàm số đồng biến khoảng (0; +∞)? A y = log π4 x B y = log √2 x √ C y = loga x a = − D y = log 14 x Câu 114 √ Thể tích khối lăng √ trụ tam giác có cạnh√bằng là: 3 A B C 12 √ Câu 115 Cho chóp S ABCD có đáy ABCD hình vng cạnh a Biết S A ⊥ (ABCD) S A = a Thể tích √ khối chóp S ABCD √ 3 √ a3 a a A B C a3 D 12 Câu 116 [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 1% năm Biết khơng rút tiền khỏi ngân hàng sau tháng, số tiền lãi nhập vào vốn ban đầu để tính lãi cho tháng Hỏi sau năm người thu (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định thời gian lãi suất không đổi người khơng rút tiền ra? A 11 năm B 10 năm C 12 năm D 13 năm Câu 117 Phần thực phần ảo số phức z = −3 + 4i A Phần thực 3, phần ảo B Phần thực −3, phần ảo −4 C Phần thực 3, phần ảo −4 D Phần thực −3, phần ảo 9t , với m tham số thực Gọi S tập tất giá trị m 9t + m2 cho f (x) + f (y) = 1, với số thực x, y thỏa mãn e x+y ≤ e(x + y) Tìm số phần tử S A B C D Vô số Câu 118 [4] Xét hàm số f (t) = Trang 9/10 Mã đề x+1 Câu 119 Tính lim x→−∞ 6x − 1 A B C D Câu 120 [2-c] Giá trị lớn hàm số y = ln(x2 + x + 2) đoạn [1; 3] A ln B ln 14 C ln 12 D ln 10 Câu 121 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 2a, tam giác S AB đều, H trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD √ √ a3 a3 2a3 4a3 A B C D 3 Câu 122 [2-c] Gọi M, m giá trị lớn giá trị nhỏ hàm số y = x + ln x đoạn [1; e] Giá trị T = M + m 2 A T = e + B T = + C T = e + D T = e + e e √ √ Câu 123 √Tìm giá trị lớn hàm số y = x + + 6−x √ √ A + B C D Câu 124 Tập xác định hàm số f (x) = −x3 + 3x2 − A (−∞; +∞) B (1; 2) C [1; 2] D [−1; 2) Câu 125 Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận tháng người phải trả cho ngân hàng triệu đồng trả tháng hết nợ (tháng cuối trả triệu) Hỏi sau tháng người trả hết nợ ngân hàng A 22 B 23 C 21 D 24 Câu 126 Giá trị lim (3x2 − 2x + 1) x→1 A B +∞ Câu 127 [1] Giá trị biểu thức log √3 10 1 A B − 3 C D C −3 D Câu 128 Cho dãy số (un ) (vn ) lim un = a, lim = +∞ lim A B +∞ C −∞ un D Câu 129 [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = có nghiệm 1 1 A m > B m ≥ C m < D m ≤ 4 4 Câu 130 Giá trị cực đại hàm số y = x − 3x + A B −1 C D - - - - - - - - - - HẾT- - - - - - - - - - Trang 10/10 Mã đề ĐÁP ÁN BẢNG ĐÁP ÁN CÁC MÃ ĐỀ Mã đề thi 1 B D B D D D A 10 C D 11 B 12 A 13 B 15 B 16 A 17 B 18 A 19 14 20 B 21 A B 22 C 23 24 C 25 26 D D B 27 B 28 A D 29 B B 30 D 31 32 D 33 D 35 D 34 B 36 D 37 C 38 B 39 40 B 41 C 43 C 44 A 45 C 46 A 47 A 48 A 49 50 A 51 42 C 52 54 C B 56 58 60 D C 62 A D B 53 D 55 D 57 B D B 59 C 61 C 63 C C 64 D 65 66 D 67 D 68 D 69 D 70 B C 72 71 B 73 B 75 74 A D 76 B 77 B 78 B 79 B 80 B 81 82 A 84 B C 86 C 83 D 85 D C 87 88 D 89 A 90 D 91 D 92 D 93 D 94 D 95 A 96 B 98 100 97 C B 102 A B 99 D 101 D 103 C 104 D 105 B 106 D 107 B 108 D 109 B 110 112 114 111 C D 113 B 116 D B 115 A D 117 C 118 B 119 A 120 B 121 D 123 D 122 D 124 A 125 A 126 A 127 128 D 129 130 A B D