Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Một chất điểm chuyển động có vận tốc phụ thuộ[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động? A S = 20 (m) B S = 24 (m) C S = 28 (m) D S = 12 (m) Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? B < m , C −4 < m < D ∀m ∈ R A m < −u (2; −2; 1), kết luận sau đúng? Câu Trong không gian với hệ tọa độ Oxyz cho → −u | = −u | = −u | = −u | = √3 A |→ B |→ C |→ D |→ + 2x x+1 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = C R = 21 D R = 29 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 D C(6; −17; 21) A C(20; 15; 7) B C(6; 21; 21) C C(8; ; 19) p Câu Cho hai số thực x, y thỏa mãn hệ điều kiện: x ≥ 0; y ≤ 18x3 + 4x = (3 − y) − y Kết luận sau sai? A Nếu < x < π y > − 4π2 B Nếux = y = −3 C Nếu < x < y < −3 D Nếux > thìy < −15 Câu Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x2 − 2x + B y = x3 C y = −x4 + 3x2 − D y = x3 − 2x2 + 3x + Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; −5; 0) B (0; 5; 0) C (0; 0; 5) D (0; 1; 0) Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 −u (2; −2; 1), kết luận sau đúng? Câu 10 Trong không gian với hệ tọa độ Oxyz cho → √ −u | = −u | = −u | = −u | = A |→ B |→ C |→ D |→ Câu 11 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 − 2x2 + 3x + B y = x2 − 2x + C y = −x4 + 3x2 − D y = x3 x Câu 12 Giá trị nhỏ hàm số y = tập xác định x +1 1 A y = B y = C y = −1 D y = − R R R R 2 Trang 1/5 Mã đề 001 Câu 13 Hàm số sau khơng có cực trị? A y = x2 C y = x4 + 3x2 + B y = x3 − 6x2 + 12x − D y = cos x Câu 14 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ a b2 − 3a2 a2 3b2 − a2 A VS ABC = B VS ABC = √ 212 √ 212 3ab 3a b C VS ABC = D VS ABC = 12 12 Câu 15 Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; 2) B S = [ -ln3; +∞) C S = (−∞; ln3) D S = [ 0; +∞) √ ′ ′ ′ Câu 16 lăng trụ ABC.A B C có đáy a, AA′ = 3a Thể tích khối lăng trụ cho là: √ Cho √ A 3a3 B 3a3 C 3a3 D a3 R Câu 17 6x5 dxbằng C x6 + C D 30x4 + C A 6x6 + C B x6 + C Câu 18 Trong không gian Oxyz, cho mặt cầu (S ) : (x + 1)2 + (y − 3)2 + (z + 2)2 = Mặt phẳng (P) tiếp xúc với mặt cầu (S ) điểm A(−2; 1; −4) có phương trình là: A 3x − 4y + 6z + 34 = B x − 2y − 2z − = C −x + 2y + 2z + = D x + 2y + 2z + = Câu 19 Cho hàm số y = f (x) xác định liên tục đoạn có [−2; 2] có đồ thị đường cong hình vẽ bên Điểm cực tiểu đồ thị hàm số y = f (x) A M(−2; −4) B x = C M(1; −2) D x = −2 Câu 20 Cho hàm số y = f (x) có đồ thị hình vẽ Tìm m để phương trình f (x) = m có bốn nghiệm phân biệt A m > −4 B −4 < m < −3 C −4 < m ≤ −3 D −4 ≤ m < −3 √ Câu 21 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = √ a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O đến mặt phẳng (S AB) √ √ A d = a B d = 2a C d = a D d = a Câu 22 Cần chọn người cơng tác từ tổ có 30 người, số cách chọn A 10 B 330 C A330 D C30 Câu 23 Với a số thực dương tùy ý, log5 (5a) A + log5 a B − log5 a C + log5 a D − log5 a Câu 24 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 96 B S = 84 C S = 1979 D S = 364 Câu 25 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 26 Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0), D(1; 2; Độ dài đường cao AH tứ diện ABCD là: A B C D Câu 27 Một bình đựng nước dạng hình nón (khơng có đáy), đựng đầy nước Người ta thả vào khối cầu có đường kính chiều cao bình nước đo thể tích nước tràn 18π Trang 2/5 Mã đề 001 (dm3) Biết khối cầu tiếp xúc với tất đường sinh hình nón nửa khối cầu chìm nước Tính thể tích nước cịn lại bình A 6π(dm3 ) B 24π(dm3 ) C 54π(dm3 ) D 12π(dm3 ) Câu 28 Cho hình trụ (T ) có chiều cao bán kính 3a Một hình vng ABCD có hai cạnh AB, CD hai dây cung hai đường trịn đáy, cạnh AD, BC khơng phải đường sinh hình trụ (T ) Tính cạnh hình √ vuông √ 3a 10 B C 6a D 3a A 3a Câu 29 Tứ diện OABC có OA = OB = OC = a đơi vng góc Gọi M, N, P trung điểm AB, BC, CA Thể tích tứ diện OMNP a3 a3 a3 a3 A B C D 12 24 √3 a2 b Câu 30 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c C D − A B 3 4 R R R Câu 31 Cho f (x)dx = 10 f (x)dx = Tính f (x)dx −1 A B −2 −1 C 18 1 + + + ta được: loga x loga2 x logak x 4k(k + 1) k(k + 1) B M = C M = loga x 2loga x D Câu 32 Rút gọn biểu thức M = A M = k(k + 1) 3loga x D M = k(k + 1) loga x Câu 33 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 29 27 23 25 A B C D 4 4 → − → − Câu 34 Trong không gian với hệ trục tọa độ Oxyz cho u = (2; 1; 3), v = (−1; 4; 3) Tìm tọa độ véc −u + 3→ −v tơ 2→ −u + 3→ −v = (3; 14; 16) −u + 3→ −v = (2; 14; 14) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 35 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt cầu có tâm I(1; 2; 4) tiếp xúc với mặt phẳng (P) : 2x + y − 2z + = A (x − 1)2 + (y + 2)2 + (z − 4)2 = B (x − 1)2 + (y − 2)2 + (z − 4)2 = 2 2 C (x − 1) + (y − 2) + (z − 4) = D (x − 1)2 + (y − 2)2 + (z − 4)2 = Câu 36 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (−3; 0) B (−1; 1) C (1; 5) D (3; 5) Câu 37 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 38 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m < C −3 ≤ m ≤ D m > −2 Câu 39 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > C m > m < − D m > m < −1 Câu R40 Chọn mệnh đề mệnh đề sau: R A x dx =5 x + C B sin xdx = cos x + C 2x R R e (2x + 1)3 2x C e dx = + C D (2x + 1) dx = +C Trang 3/5 Mã đề 001 Câu 41 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 42 Cho hình chóp S ABCD có cạnh đáy a Tính khoảng cách từ điểm A đến mặt phẳng (S BD) theo a √ √ a a A B C 2a D a 2 Câu 43 Đạo hàm hàm số y = (2x + 1) tập xác định 4 − − B − (2x + 1) A − (2x + 1) 3 1 − − C (2x + 1) ln(2x + 1) D 2(2x + 1) ln(2x + 1) − Câu 44 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2020 B 2022 Câu 45 Cho hàm số f (x) liên tục R C 2019 R2 ( f (x) + 2x) = Tính A B D 2021 R2 f (x) C −1 D −9 Câu 46 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 12 B 21 C 18 D 27 Câu 47 Tập nghiệm bất phương trình 52x+3 > −1 A R B (−3; +∞) C ∅ D (−∞; −3) Câu 48 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−1; −4) B (1; −4) C (0; −3) D (−3; 0) − → Câu 49 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → n→ Góc hai mặt phẳng (P) (Q) Q Biết cosin góc hai vectơ nP nQ − A 60◦ B 90◦ C 30◦ D 45◦ Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001