1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn khảo sát chất lượng thptqg môn toán (991)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 127,32 KB

Nội dung

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính I = 1∫ 0 3√7x + 1dx A I = 21 8 B I = 20[.]

Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính I = R1 √3 7x + 1dx 21 20 60 45 B I = C I = D I = 28 28 ′ ′ ′ Câu Cho lăng trụ ABC.A B C có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 3a 5a 2a a A √ C √ B D 5 Câu R3 Công thức sai? R A R sin x = − cos x + C B R cos x = sin x + C C a x = a x ln a + C D e x = e x + C A I = Câu Cho hìnhqchóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: √ √ a2 b2 − 3a2 a2 3b2 − a2 B VS ABC = A VS ABC = 12 12 √ √ 3ab2 3a2 b C VS ABC = D VS ABC = 12 12 Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > B m > 2e C m > e2 D m ≥ e−2 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = sin x x−1 C y = tan x D y = x3 − 2x2 + 3x + Câu Tìm tất giá trị tham số m để đường thẳng y = x + m cắt đồ thị hàm số y = + 2x x+1 hai điểm phân biệt thuộc hai nửa mặt phẳng khác bờ trục hoành? B −4 < m < C ∀m ∈ R D < m , A m < x π π π Câu Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = + C F( ) = − D F( ) = − 4 4 4 Câu Kết đúng? R R sin3 x A sin x cos x = + C B sin2 x cos x = cos2 x sin x + C R R sin3 x 2 C sin x cos x = −cos x sin x + C D sin x cos x = − + C x π π π Câu 10 Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = + C F( ) = + D F( ) = − 4 4 4 Câu 11 Trong không gian với hệ tọa độ Oxyz, cho M(2; 3; −1) Tìm tọa độ điểm M ′ đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; 3; 1) B M ′ (2; −3; −1) C M ′ (−2; −3; −1) D M ′ (2; 3; 1) Trang 1/5 Mã đề 001 √ Câu 12 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành 10π π C V = D V = π A V = B V = 3 Câu 13 Cho hai số thực a, bthỏa mãn nào√sau sai? √ √ √ √5 a > b > Kết luận √5 a b C a > b A e > e B a < b D a− < b− Câu 14 Số nghiệm phương trình x + 5.3 x − = A B C Câu 15 Hàm số sau khơng có cực trị? A y = x2 C y = cos x D B y = x4 + 3x2 + D y = x3 − 6x2 + 12x − Câu 16 Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m ≤ B m ≥ C m < D m > π R4 Câu 17 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − 16 A 16 π2 − B 16 π2 + 16π − π2 + 15π C D 16 16 − −a = (−1; 1; 0), → −c = (1; 1; 1) Trong Câu 18 Trong không gian Oxyz, cho ba véctơ → b = (1; 1; 0), → mệnh đề sau, mệnh đề sai? √ → √ → − → → − − − − −c = A a = B b ⊥ c C → D b ⊥→ a Câu 19 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A −16 B C D 16 x+1 Câu 20 Tập nghiệm bất phương trình log3 (10 − ) ≥ − x chứa số nguyên A B C D Vơ số Câu 21 Thể tích khối lập phương có cạnh 3a là: A 8a3 B 27a3 C 2a3 D 3a3 −a = (4; −6; 2) Phương Câu 22 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t B x = + 2ty = −3tz = + t C x = −2 + 4ty = −6tz = + 2t D x = + 2ty = −3tz = −1 + t Câu 23 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (−∞; 1) B (0; 1) C (1; +∞) D (−1; 0) Câu 24 Tính đạo hàm hàm số y = 2023 A y′ = 2023 x ln x B y′ = 2023 x ln 2023 D y′ = 2023 x x C y′ = x.2023 x−1 Câu 25 Tìm tập hợp tất giá trị tham số m để hàm số y = x3 + (m − 2)x2 − 3mx + m có điểm cực đại có hồnh độ nhỏ A S = [−1; +∞) B S = (−∞; −4) ∪ (−1; +∞) C S = (−4; −1) D S = (−1; +∞) Câu 26 Tính thể tích khối trịn xoay quay xung quanh trục hồnh hình phẳng giới hạn đường y = , x = 1, x = trục hoành x 3π 3π π π A V = B V = C V = D V = Trang 2/5 Mã đề 001 (2 ln x + 3)3 : Câu 27 Họ nguyên hàm hàm số f (x) = x (2 ln x + 3) ln x + (2 ln x + 3)4 (2 ln x + 3) + C B + C C + C D + C A 2 8 Câu 28 Nguyên hàm F(x) hàm số f (x) = 2x2 + x3 − thỏa mãn điều kiện F(0) = x4 x4 A x3 + − 4x B x3 − x4 + 2x C x3 + − 4x + D 2x3 − 4x4 4 x −2x +3x+1 Câu 29 Cho hàm số f (x) = e Mệnh đề đúng? A Hàm số nghịch biến khoảng(−∞; 1) đồng biến khoảng(3; +∞) B Hàm số đồng biến khoảng(−∞; 1) nghịch biến khoảng(3; +∞) C Hàm số nghịch biến khoảng (−∞; 1) (3; +∞) D Hàm số đồng biến khoảng (−∞; 1) (3; +∞) y−6 z−1 x−3 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: y−1 z−1 x−1 y z−1 x = = B = = A −1 −1 −3 x y−1 z−1 x y−1 z−1 C = = D = = −3 −1 −3 Câu 31 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 2π B 4π C 3π D 8π √ Câu 32 Cho hình chóp S ABC có S A⊥(ABC), S A = a Tam giác ABC vuông cân B, AC = 2a Thể tích√khối chóp S ABC √ √ √ 2a3 a3 a3 3 B C a A D 3 Câu 33 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 6a3 B 4a3 C 9a3 D 3a3 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : Câu 34 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B −3 C D Câu 35 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 2mn + n + C log2 2250 = D log2 2250 = m n Câu 36 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 37 Hàm số hàm số sau đồng biến R A y = −x3 − x2 − 5x B y = x3 + 3x2 + 6x − 4x + C y = D y = x4 + 3x2 x+2 Câu 38 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: Trang 3/5 Mã đề 001 A B C 12 D Câu 39 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai cạnh AB, AD Tính khoảng cách hai đường thẳng MN S C √ √ √ √ 3a a 15 3a 3a 30 A B C D 2 10 √ 2x − x2 + Câu 40 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 41 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > C m > m < − D m > m < −1 Câu 42 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −2 B C −3 D Câu 43 Trong không gian Oxyz cho mặt phẳng (P) : x − 2y + 3z − = Một véc tơ pháp tuyến (P) −n = (1; 3; −2) −n = (1; 2; 3) −n = (1; −2; 3) −n = (1; −2; −1) A → B → C → D → Câu 44 Bất phương trình log2021 (x − 1) ≤ có nghiệm nguyên? A 2022 B C D − → Câu 45 Trong không gian Oxyz, cho hai mặt phẳng √ (P) (Q) có hai vectơ pháp tuyến nP − − → − → Góc hai mặt phẳng (P) (Q) n→ Q Biết cosin góc hai vectơ nP nQ − ◦ A 60 B 90◦ C 30◦ D 45◦ 2 Câu 46 Cho hàm số f (x) = − x + (2m + 3)x − (m + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C D 16 Câu 47 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vng cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 2 6 Câu 48 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D Câu 49 Nếu R6 A f (x) = R6 g(x) = −4 B −6 R6 ( f (x) + g(x)) C −2 D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 18:35