Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính diện tích S của hình phẳng được giới hạn[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu R2 Kết đúng? R A sin2 x cos x = −cos2 x sin x + C B sin2 x cos x = cos2 x sin x + C R R sin3 x sin3 x C sin2 x cos x = + C D sin2 x cos x = − + C 3 Rm dx theo m? Câu Cho số thực dươngm Tính I = x + 3x + m+2 2m + m+1 m+2 A I = ln( ) B I = ln( ) C I = ln( ) D I = ln( ) 2m + m+2 m+2 m+1 Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; 2) B (−2; 1; 2) C (2; −1; −2) D (−2; −1; 2) π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln A F( ) = + B F( ) = − C F( ) = − D F( ) = + 4 4 4 Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(5; 5; 2),mặt phẳng (P):z − = 0, mặt cầu (S )có tâm I(3; 4; 6) bán kính R = 5.Viết phương trình đường thẳng qua A, nằm (P) cắt (S) theo dây cung dài nhất? A x = + 2ty = + tz = − 4t B x = + 2ty = + tz = C x = + ty = + 2tz = D x = + 2ty = + tz = Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 C C(20; 15; 7) D C(6; −17; 21) A C(6; 21; 21) B C(8; ; 19) Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; −2; 0) B (0; 6; 0) C (0; 2; 0) D (−2; 0; 0) Câu Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −1), M(2; 4; 1), N(1; 5; 3) Biết C điểm mặt phẳng (P):x + z − 27 = cho tồn điểm B, D tương ứng thuộc tia AM, AN để tứ giác ABCD hình thoi Tọa độ điểm C là: 21 A C(6; 21; 21) B C(6; −17; 21) C C(20; 15; 7) D C(8; ; 19) ′ ′ ′ ′ Câu 10 Cho hình hộp ABCD.A B C D có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 30a3 C 60a3 D 20a3 Câu 11 Một chất điểm chuyển động có vận tốc phụ thuộc thời gian theo hàm số v(t) = 2t + 10(m/s) Tính quãng đường S mà chất điểm sau giây kể từ lúc bắt đầu chuyển động A S = 20 (m) B S = 28 (m) C S = 12 (m) D S = 24 (m) Trang 1/5 Mã đề 001 Câu 12 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 13 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x2 − 2x + C y = −x4 + 3x2 − D y = x3 − 2x2 + 3x + Câu 14 Hình nón có bán kính √ đáy R, đường sinh l diện tích xung quanh nó√bằng A πRl B π l2 − R2 C 2πRl D 2π l2 − R2 x Câu 15 Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = C y = − D y = −1 A y = R R R R 2 π x π π Câu 16 Biết F(x) nguyên hàm hàm số f (x) = F( ) = √ Tìm F( ) cos x π π ln π π ln π π ln π π ln A F( ) = − B F( ) = − C F( ) = + D F( ) = + 4 4 4 Câu 17 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −5 B S = C S = −6 D S = z x−1 y+2 = = không qua điểm đây? Câu 18 Đường thẳng (∆) : −1 A A(−1; 2; 0) B (3; −1; −1) C (1; −2; 0) D (−1; −3; 1) Câu 19 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A m > B m < −1 C −1 ≤ m < D −1 ≤ m ≤ −a = (4; −6; 2) Phương Câu 20 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 2ty = −3tz = + t C x = + 2ty = −3tz = + t B x = + 2ty = −3tz = −1 + t D x = −2 + 4ty = −6tz = + 2t √ Câu √ 21 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = 2a B d = a C d = a D d = a Câu 22 Biết F(x) = x2 nguyên hàm hàm số f (x) R Giá trị R3 [1 + f (x)]dx 26 32 π R4 Câu 23 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) A 10 B π2 + 15π A 16 π2 − B 16 C π2 + 16π − C 16 D π2 + 16π − 16 D 16 √ Câu 24 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ A (x − 4)2 + (y + 8)2 = B (x − 4)2 + (y + 8)2 = 20 √ C (x + 4)2 + (y − 8)2 = 20 D (x + 4)2 + (y − 8)2 = Trang 2/5 Mã đề 001 Câu 25 Lăng trụ ABC.A′ B′C ′ có đáy tam giác cạnh a Hình chiếu vng góc A′ lên (ABC) trung điểm BC Góc cạnh bên mặt phẳng đáy 600 Khoảng cách từ C ′ đến mp (ABB′ A′ ) √ √ √ √ 3a 10 a 3a 13 3a 13 B C D A 26 20 13 Câu 26 Đồ thị hình bên đồ thị hàm số nào? −2x + 2x + 2x + 2x − A y = B y = C y = D y = 1−x x+1 x+1 x−1 Câu 27 Tính diện tích hình phẳng giới hạn đồ thị (C) hàm số y = x2 − 4x + 5, tiếp tuyến A(1; 2) tiếp tuyến B(4; 5) đồ thị (C) B C D A 4 4 (2 ln x + 3)3 Câu 28 Họ nguyên hàm hàm số f (x) = : x (2 ln x + 3)4 ln x + (2 ln x + 3)4 A + C B + C C + C 8 Câu 29 Họ nguyên hàm hàm số y = (x − 1)e x là: A (x − 1)e x + C B xe x + C C (x − 2)e x + C D (2 ln x + 3)2 + C D xe x−1 + C x−3 y−6 z−1 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x−1 y z−1 x y−1 z−1 A = = B = = −1 −3 −1 −3 x y−1 z−1 x y−1 z−1 C = = D = = −3 −1 Câu 31 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt √ đáy nhỏ nhất, S A 125dm2 B 106, 25dm2 C 50 5dm2 D 75dm2 Câu 30 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : Câu 32 Trong không gian với hệ tọa độ Oxyz, cho mặt cầu(S): x2 + y2 + z2 − 4x − 2y + 10z + 14 = mặt phẳng (P) có phương trình x + y + z − = Mặt phẳng (P) cắt mặt cầu (S) theo đường trịn có chu vi là: √ A 2π B 4π C 8π D 3π Câu 33 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 6a3 B 9a3 C 4a3 D 3a3 Câu 34 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 Câu 35 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = (x − 2x)dx − (x2 − 2x)dx B 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − C R3 1 |x − 2x|dx = − |x2 − 2x|dx R2 (x − 2x)dx + R3 (x2 − 2x)dx Trang 3/5 Mã đề 001 D R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx Câu 36 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = − 2t x = + 2t x = + 2t x = −1 + 2t y = −2 + 3t y = −2 + 3t y = −2 − 3t y = + 3t A B C D z = + 5t z = − 5t z = − 5t z = −4 − 5t Câu 37 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x > y B Nếu a > a x > ay ⇔ x < y C Nếu a > a x = ay ⇔ x = y D Nếu a < a x > ay ⇔ x < y Câu 38 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc a Tính thể tích khối √diện tích tam giác S BC3 √ √ chóp S ABC √ với mặt phẳng (ABC), 3 a 15 a a 15 a 15 B C D A 16 Câu 39 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080255 đồng B 36080254 đồng C 36080251 đồng D 36080253 đồng Câu 40 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D 3x cắt đường thẳng y = x + m Câu 41 Tìm tất giá trị tham số mđể đồ thị hàm số y = x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A m = B Không tồn m C m = D m = −2 Câu 42 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho đồng biến khoảng (1; 4) B Hàm số cho nghịch biến khoảng (3; +∞) C Hàm số cho đồng biến khoảng (−∞; 3) D Hàm số cho nghịch biến khoảng (1; 4) ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (3; ) B (2 ; 0) C (0 ; −2) D (0 ; 3) Câu 43 Cho hàm số y = Câu 44 Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; −3) mặt phẳng (P) : 2x+2y−z+9 = Đường thẳng d qua A có vectơ phương ⃗u = (3; 4; −4) cắt (P) B Điểm M thay đổi (P) cho M ln nhìn đoạn AB góc 90o Khi độ dài MB lớn nhất, đường thẳng MB qua điểm điểm sau? A J(−3; 2; 7) B I(−1; −2; 3) C H(−2; −1; 3) D K(3; 0; 15) Câu 45 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2019 B 2021 C 2020 D 2022 Câu 46 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (1; −4) B (0; −3) C (−1; −4) D (−3; 0) Trang 4/5 Mã đề 001 Câu 47 Cho khối chóp S ABCD có đáy ABCD hình vng với AB = a, S A⊥(ABCD) S A = 2a Thể tích khối chóp cho a3 2a3 B 2a3 C 6a3 D A 3 Câu 48 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −7 C −1 D Câu 49 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) điểmM(1; 2; 2)thuộc mặt cầu Phương trình (S ) A (x − 1)2 + (y − 4)2 + (z + 2)2 = 10 B (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 √ C (x − 1)2 + (y − 4)2 + (z + 2)2 = 40 D (x + 1)2 + (y + 4)2 + (z − 2)2 = 40 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001