Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong các hình nón (ℵ) nội tiếp mặt cầu (S )[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 , ((ℵ) có đỉnh thuộc (S ) đáy đường tròn nằm hồn tồn (S )), tìm diện tích xung quanh (ℵ) thể tích (ℵ)lớn √ √ √ 3π 2π C 3π B D √ A 3π 3 Câu Trong hình nón (ℵ) nội tiếp mặt cầu (S ) bán kính R = Câu R2 Cơng thức sai? A R e x = e x + C C cos x = sin x + C R B R sin x = − cos x + C D a x = a x ln a + C Câu Tìm tất giá trị tham số m để hàm số y = xe−x + mx đồng biến R A m > 2e B m ≥ e−2 C m > D m > e2 Câu Cho a > 1; < x < y Bất đẳng thức sau đúng? A log x > log y B ln x > ln y C log x > log y D loga x > loga y a a Câu 5.√ Cho √hai số thực a, bthỏa mãn√ a > b > Kết luận sau sai? √ √ √ B a < b A a > b C ea > eb D a− < b− Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = B y = sin x x−1 C y = tan x D y = x3 − 2x2 + 3x + Câu Kết đúng? R R sin3 x A sin2 x cos x = −cos2 x sin x + C B sin2 x cos x = − + C R R sin3 x C sin2 x cos x = + C D sin2 x cos x = cos2 x sin x + C Câu Cắt mặt trụ mặt phẳng tạo với trục góc nhọn ta A Đường parabol B Đường hypebol C Đường tròn D Đường elip Câu Trong không gian với hệ tọa độ Oxyz cho M(2; −3; −1), N(2; −1; 1) Tìm tọa độ điểm E thuộc trục tung cho tam giác MNEcân E A (0; 6; 0) B (−2; 0; 0) C (0; −2; 0) D (0; 2; 0) Câu 10 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (2; −1; −2) B (2; −1; 2) C (−2; −1; 2) D (−2; 1; 2) Câu 11 Cho hình chóp S ABCcó cạnh đáy a cạnh bên b Thể tích khối chóp là: q √ √ a b2 − 3a2 3ab2 A VS ABC = B VS ABC = 12 12 √ √ a2 3b2 − a2 3a2 b C VS ABC = D VS ABC = 12 12 Rm dx Câu 12 Cho số thực dươngm Tính I = theo m? x + 3x + Trang 1/5 Mã đề 001 A I = ln( 2m + ) m+2 B I = ln( m+2 ) m+1 C I = ln( m+1 ) m+2 D I = ln( m+2 ) 2m + → − −2; 1), kết luận sau đúng? Câu 13 Trong không gian với hệ tọa √ độ Oxyz cho u (2; −u | = −u | = → − → − C |→ D |→ A | u | = B | u | = Câu 14 Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = sin x B y = x−1 C y = tan x D y = x3 − 2x2 + 3x + √ Câu 15 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành 10π π A V = B V = C V = π D V = 3 Câu 16 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x2 − 2x + C y = x3 − 2x2 + 3x + D y = −x4 + 3x2 − Câu 17 Đồ thị hàm số y = x3 − 3x2 − 2x cắt trục hoành điểm? A B C Câu 18 Tính đạo hàm hàm số y = 2023 x A y′ = 2023 x B y′ = 2023 x ln 2023 D D y′ = 2023 x ln x π R4 Câu 19 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − 16 A 16 π2 + 16π − B 16 C y′ = x.2023 x−1 π2 + 15π C 16 π2 − D 16 Câu 20 Thể tích khối lập phương có cạnh 3a là: A 2a3 B 3a3 C 8a3 D 27a3 R3 R3 R3 Câu 21 Biết f (x)dx = g(x)dx = Khi [ f (x) + g(x)]dx A −2 B C D Câu 22 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc √ tạo hai mặt phẳng√(S AC), (S BC) Tính cos φ =? 15 3 B C D A 5 2 Câu 23 Trong không gian Oxyz, cho ba điểm A(0; 0; −1), B(−1; 1; 0), C(1; 0; 1) Tìm điểm M cho 3MA2 + 2MB2 − MC đạt giá trị nhỏ 3 3 A M(− ; ; −1) B M(− ; ; −1) C M( ; ; −1) D M(− ; ; 2) 4 4 R Câu 24 6x5 dxbằng C 30x4 + C D x6 + C A 6x6 + C B x6 + C Câu 25 Trong không gian với hệ tọa độ Oxyz, cho A(2; −1; 6), B(−3; −1; −4), C(5; −1; 0) Bán kính đường√trịn nội tiếp tam giác ABC √ √ √ A B C D √ Câu 26 Cho hình chóp tứ giác S ABCD có đáy hình vng cạnh a 2, tam giác S AB vuông cân S mặt phẳng (S AB) vng√góc với mặt phẳng đáy √ Khoảng cách từ A đến mặt √ phẳng (S CD) √ a a a 10 A a B C D Trang 2/5 Mã đề 001 Câu 27 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 2,075 B 33,2 C 8,9 D 11 x2 + 2x là: Câu 28 Khoảng cách hai điểm cực trị đồ thị hàm số y = x−1 √ √ √ √ B 15 C D −2 A Câu 29 Đồ thị hàm số sau có điểm cực trị: A y = −x4 − 2x2 − B y = x4 + 2x2 − C y = x4 − 2x2 − D y = 2x4 + 4x2 + Câu 30 Một công ty chuyên sản xuất gỗ muốn thiết kế thùng đựng hàng có dạng hình lăng trụ tứ giác khơng nắp, tích 62,5dm3 Để tiết kiệm vật liệu làm thùng, người ta cần thiết kế thùng cho tổng S diện tích xung quanh diện tích mặt đáy nhỏ nhất, S √ A 106, 25dm2 B 125dm2 C 75dm2 D 50 5dm2 Câu 31 Một thùng đựng nước có dạng hình trụ có chiều cao h bán kính đáy√bằng R Khi đặt thùng R nước nằm ngang hình khoảng cách từ trục hình trụ tới mặt nước (mặt nước thấp trục hình trụ) Khi đặt thùng nước thẳng đứng hình chiều cao mực nước thùng h1 h1 Tính tỉ số √h √ √ √ 2π − 3 2π − 3 π− A B C D 12 12 Câu 32 Tập xác định hàm số y = logπ (3 x − 3) là: A Đáp án khác B [1; +∞) C (3; +∞) D (1; +∞) Câu 33 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + √ z2 − 4x − 6y + 2z − = 0.√ A R = 14 B R = 15 C R = D R = Câu 34 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B C D 6π 5 Câu 35 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 4a C 9a D 3a3 A 6a Câu 36 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C −2 D √ Câu 37 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = D y′ = √ (x − 1) ln 2(x − 1) ln (x − 1)log4 e x2 − ln Câu 38 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx B 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx Trang 3/5 Mã đề 001 C R3 |x2 − 2x|dx = − D R3 R2 (x2 − 2x)dx + (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − R3 |x2 − 2x|dx Câu 39 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a < a x > ay ⇔ x < y C Nếu a > a x > ay ⇔ x > y D Nếu a > a x > ay ⇔ x < y Câu 40 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 500π 400π 125π A B C D 9 Câu 41 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln B y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln √ Câu 42 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 3; 3, 5)· B (3, 7; 3, 9)· C (3, 1; 3, 3)· D (3, 5; 3, 7)· Câu 43 Tính đạo hàm hàm số y = x 5x B y′ = x ln A y′ = ln C y′ = x D y′ = x.5 x−1 Câu 44 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 48 C 76 D 64 Câu 45 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 B P = C P = D P = A P = 55 220 14 Câu 46 Cho khối lăng trụ đứng ABC.A′ B′C ′ √ có đáy ABC tam giác vuông cân A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ a3 a3 a3 a3 A B C D 2 Câu 47 Điểm M hình vẽ bên biểu thị cho số phức Khi số phức w = 4z A w = −8 − 12i B w = + 12i C w = −8 + 12i D w = −8 − 12i Câu 48 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 27 B 18 C 21 D 12 Câu 49 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 7π 512π 22π A V = B V = C V = D V = 15 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001