Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề nào dưới đây đúng? A Hàm số[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số nghịch biến khoảng (−∞; −3) B Hàm số nghịch biến khoảng (1; +∞) C Hàm số nghịch biến khoảng (−3; 1) D Hàm số đồng biến khoảng (−3; 1) Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = C yCD = 52 D yCD = −2 R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(2x − 1) + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = 2F(x) − + C D f (2x − 1)dx = F(2x − 1) + C Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B − C D 6 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường thẳng BB′ AC ′ √ √ √ √ a a a A a C D B 2 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều√cao tứ diện √ √ π 3.a2 2π 2.a2 π 2.a2 A π 3.a C D B 3 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 12 4m2 − m2 − m2 − 12 B C D A 2m 2m 2m m √ x Câu Tìm nghiệm phương trình x = ( 3) A x = B x = C x = D x = −1 Câu Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (1; 2) B (2; +∞) C (−∞; 1) D (1; +∞) Câu 10 Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 11 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B C D A Câu 12 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 B −3 C −2 D A Trang 1/5 Mã đề 001 R Câu 13 Cho dx = F(x) + C Khẳng định đúng? x 1 B F ′ (x) = C F ′ (x) = − D F ′ (x) = lnx A F ′ (x) = x x x Câu 14 Cho hàm số f (x) = cosx + x Khẳng định đúng? R R x2 A f (x) = sinx + + C B f (x) = −sinx + x2 + C R R x2 C f (x) = −sinx + + C D f (x) = sinx + x2 + C x−2 y−1 z−1 Câu 15 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 B C D A 3 Câu 16 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln(6a2 ) B lna C ln D ln Câu 17 √ thức |z1 + z1 z2 | √ √ Cho số phức z1 = +√2i, z2 = − i Giá trị biểu B 130 C 10 D 10 A 30 − 2i (1 − i)(2 + i) Câu 18 Phần thực số phức z = + 2−i + 3i 29 11 11 29 B C D − A − 13 13 13 13 Câu 19 Cho số phức z = + 5i Tìm số phức w = iz + z A w = + 7i B w = −7 − 7i C w = − 3i D w = −3 − 3i Câu 20 Những số sau vừa số thực vừa số ảo? A B Không có số C Chỉ có số D C.Truehỉ có số (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 21 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? C z số ảo D |z| = A z = z B z = z Câu 22 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = D A = 2ki 25 1 Câu 23 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 17 B 31 C −17 D −31 !2016 !2018 1−i 1+i + Câu 24 Số phức z = 1−i 1+i A B −2 C D + i 4(−3 + i) (3 − i) Câu 25 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = B |w| = C |w| = 85 D |w| = 48 R1 R R1 R1 Câu 26 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −8 B −3 C 12 D Câu 27 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x + 2y + 2z + 15 = B x − 2y + 2z + 15 = C x − 2y + 2z − 15 = D x + 2y + 2z − 15 = Câu 28 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e2x B F(x) = e x + C F(x) = e x+1 D F(x) = e x Trang 2/5 Mã đề 001 Câu 29 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? b Rb A a f (2x + 3) = F(2x + 3) a Rb B a k · f (x) = k[F(b) − F(a)] Ra C b f (x) = F(b) − F(a) D Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) R1 Câu 30 Tích phân e−x dx 1 e−1 C D − A e − B e e e Câu 31 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = −2023cos(2023x) C f (x) = 2023cos(2023x) cos(2023x) 2023 D f (x) = cos(2023x) B f (x) = − Câu 32 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 + x+1 x+1 + C B (x + 1) x + C C x2 x + C D (x − 1) x + C Câu 33 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x − y + z + = B x + y − z − = C x + y − z + = D 6x + y − z − = Câu 34 Cho số phức z (không phải số thực, số ảo) thỏa mãn Khi mệnh đề sau đúng? B < |z| < A < |z| < 2 2 C < |z| < 2 Câu 35 Cho số phức z , cho z số thực w = |z| bằng? + |z|2 A + z + z2 số thực − z + z2 D < |z| < z số thực Tính giá trị biểu + z2 thức √ C D √ √ √ 42 √ Câu 36 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 37 Cho số phức z thỏa mãn |z| = 1.√Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z − 1| A P = −2016 B max T = C P = D P = 2016 √ 2 Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 √ Câu 39 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 − ab − bc − ca 2 C a + b + c + ab + bc + ca D a + b + c B Trang 3/5 Mã đề 001 Câu 40 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = Câu 41 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| ≤ B |A| < C A = −1 D A = 2z − i Mệnh đề sau đúng? + iz C |A| ≥ D |A| > z+1 số ảo Tìm |z| ? z−1 B |z| = C |z| = Câu 42 Cho số phức z , thỏa mãn A |z| = D |z| = Câu 43 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 B C D A 10 Câu 44 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 A B C D 12 Câu 45 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 2mn + n + A log2 2250 = B log2 2250 = n n 2mn + 2n + 3mn + n + C log2 2250 = D log2 2250 = m n Câu 46 Chọn mệnh đề mệnh đề sau: R R (2x + 1)3 A sin xdx = cos x + C B (2x + 1) dx = + C R R e2x C x dx =5 x + C D e2x dx = +C √ Câu 47 Tính đạo hàm hàm số y = log4 x2 − x x A y′ = B y′ = C y′ = √ (x − 1) ln 2(x − 1) ln x2 − ln D y′ = (x2 x − 1)log4 e Câu 48 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 Câu 49 Chọn mệnh đề mệnh đề sau: A Nếu a > a x > ay ⇔ x < y B Nếu a > a x > ay ⇔ x > y C Nếu a > a x = ay ⇔ x = y D Nếu a < a x > ay ⇔ x < y Câu 50 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = + 2(ln a)2 B P = 2loga e C P = D P = ln a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001