Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đường cong trong hình bên là đồ thị của hàm số nào? A y = x4 + 2x2 + 1 B[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đường cong hình bên đồ thị hàm số nào? A y = x4 + 2x2 + B y = −x4 + 2x2 + C y = −x4 + D y = x4 + Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 = B = C = D = A V2 V2 V2 V2 Câu Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(5; 9; 5) B C(1; 5; 3) C C(−3; 1; 1) D C(3; 7; 4) √ Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Có tiệm cận ngang tiệm cận đứng B Không có tiệm cận ngang có tiệm cận đứng C Khơng có tiệm cận D Có tiệm cận ngang khơng có tiệm cận đứng Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : y+2 z x−1 = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y + 2z = B (P) : x + y + 2z = C (P) : x − y − 2z = D (P) : x − 2y − = Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B π C 2π D 4π Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x C D − A B 6 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vng cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 1200 B 300 C 450 D 600 Câu Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A 11 B C D 12 Câu 10 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (0; −2) B (−2; 0) C (0; 2) D (2; 0) Câu 11 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (−∞; 1) B (1; 3) C (0; 2) D (3; +∞) Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−1; −2; −3) B (2; 4; 6) C (−2; −4; −6) D (1; 2; 3) Trang 1/5 Mã đề 001 Câu 13 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 A 2a B a C a D a 3 Câu 14 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 D A −3 B −2 C Câu 15 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 60◦ B 90◦ C 45◦ D 30◦ Câu 16 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B (−∞; 1) C [1; +∞) D (1; +∞) Câu 17 Đẳng thức đẳng thức sau? A (1 + i)2018 = −21009 i B (1 + i)2018 = 21009 C (1 + i)2018 = −21009 D (1 + i)2018 = 21009 i 2(1 + 2i) Câu 18 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B C D 13 (1 + i)(2 − i) Câu 19 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = Câu 20 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B C -1 D Câu 21 Tính √ mô-đun số phức z thỏa mãn z(2 − i) + 13i√= √ 34 34 B |z| = 34 C |z| = D |z| = 34 A |z| = 3 25 1 Câu 22 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A −31 B −17 C 31 D 17 Câu 23 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i B C 29 D 13 A Câu 24 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 25 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A B −3 C −7 D R2 Câu 26 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 27 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) + C = f (x) B F ′ (x) = f (x) C F(x) = f ′ (x) + C D F(x) = f ′ (x) R + lnx Câu 28 Nguyên hàm dx(x > 0) x 1 A x + ln2 x + C B x + ln2 x + C C ln2 x + lnx + C D ln2 x + lnx + C 2 Trang 2/5 Mã đề 001 Câu 29 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = 10 D I = Câu 30 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? Rb A a k · f (x) = k[F(b) − F(a)] Ra B b f (x) = F(b) − F(a) b Rb C a f (2x + 3) = F(2x + 3) a D Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hoành tính theo cơng thức S = F(b) − F(a) Câu 31 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x − y + z + = B x + y − z − = C 6x + y − z − = D x + y − z + = R0 Câu 32 Giá trị −1 e x+1 dx A −e B e C e − D − e Câu 33 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B −2 C D 2z − i Mệnh đề sau đúng? Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| < B |A| ≥ C |A| ≤ D |A| > √ Câu 35 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B 2 C a + b + c − ab − bc − ca D a2 + b2 + c2 + ab + bc + ca Câu 36 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số ảo B z số thực không dương C |z| = D Phần thực z số âm z Câu 37 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? 1√+ |z|2 1 B C D A Câu 38 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = 13 B T = 13 C T = D T = 3 √ 2 Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 40 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn của√biểu thức P = |z1 | + |z2 | √ √ √ A P = + B P = 34 + C P = D P = 26 Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thỏa mãn z số thực ω = biểu thức M = |z + − i| √ √ A B 2 C z số thực Giá trị lớn + z2 D Câu 42 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Câu 43 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B −3 ≤ m ≤ C m > −2 D m < Câu 44 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ A 4a3 B 9a3 C 3a3 D 6a3 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 45 Trong khơng gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (1; 14; 15) C 2→ D 2→ Câu 46 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 500π 250π 400π 125π B C D A 9 Câu 47 Biết π R2 sin 2xdx = ea Khi giá trị a là: A − ln B C D ln Câu 48 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080254 đồng C 36080253 đồng B 36080251 đồng D 36080255 đồng Câu 49 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A −3 B C D d Câu 50 Cho hình chóp S ABC có đáy ABC √ tam giác vng A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A 2a B a C a D a Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001