Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A = a[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 450 C 300 D 1200 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D R Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = 2F(x) − + C B f (2x − 1)dx = F(2x − 1) + C R R C f (2x − 1)dx = F(2x − 1) + C D f (2x − 1)dx = 2F(2x − 1) + C Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m = B m , C m , −1 D m , Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C ( ; +∞) D [22; +∞) A ( ; 2] [22; +∞) B [ ; 2] [22; +∞) 4 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền √ 3bằng 2a Tính thể tích√của3 khối nón π 2.a 4π 2.a 2π.a3 π.a3 A B C D 3 3 Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab2 ) = ln a + ln b B ln( ) = b ln b C ln(ab2 ) = ln a + (ln b) D ln(ab) = ln a ln b Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 A a B a C 2a D a 3 Câu 10 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d = R C d = D d > R Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (2; 4; 6) B (−1; −2; −3) C (1; 2; 3) D (−2; −4; −6) Trang 1/5 Mã đề 001 Câu 12 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (2; 0) B (0; −2) C (0; 2) D (−2; 0) Câu 13 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A B −2 C −3 D Câu 14 Có giá trị nguyên tham số a ∈ (−10; +∞) để hàm số y = x + (a + 2)x + − a đồng biến khoảng (0; 1)? A 12 B 11 C D Câu 15 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B ln(6a2 ) C lna D ln Câu 16 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A B 12 C D Câu 17 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = + 7i C w = −7 − 7i D w = − 3i Câu 18 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 2i C −3 + 2i D −3 − 10i Câu 19 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z2 + 2z + D z · z + z + z + C z + z + Câu 20 Tính z thỏa mãn z(2 − i) + 13i = √ mô-đun số phức √ √ 34 34 A |z| = B |z| = C |z| = 34 D |z| = 34 3 Câu 21 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 2017 (1 + i) có phần thực phần ảo đơn vị? Câu 22 Số phức z = 21008 i A B 21008 C D z2 Câu 23 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A B C 11 D 13 Câu 24 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B z − z = 2a C z + z = 2bi D |z2 | = |z|2 (1 + i)(2 + i) (1 − i)(2 − i) Câu 25 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A z = z B z = C z số ảo D |z| = z Câu 26 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = − cos(2023x) B f (x) = cos(2023x) 2023 C f (x) = −2023cos(2023x) D f (x) = 2023cos(2023x) Trang 2/5 Mã đề 001 Câu 27 Tìm hàm số F(x) khơng nguyên hàm hàm số f (x) = sin2x D F(x) = − cos2x Câu 28 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A y − = B x + y + z − = C z − = D x − = A F(x) = −cos2x B F(x) = sin2 x C F(x) = −cos2 x Câu 29 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F(x) = f ′ (x) + C C F(x) = f ′ (x) D F ′ (x) + C = f (x) Câu 30 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x+1 B F(x) = e x C F(x) = e2x D F(x) = e x + Câu 31 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x − 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = Câu 32 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B −2 C D Câu 33 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(−1; 0; −2) B C(−1; −4; 4) C C(1; 4; 4) D C(1; 0; 2) √ 2 Mệnh đề Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 2z − i Mệnh đề sau đúng? Câu 35 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| > B |A| ≤ C |A| ≥ D |A| < Câu 36 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 37 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D Câu 38 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B √ C D 2 √ Câu 39 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm N C điểm M D điểm P √ √ √ 42 √ Câu 40 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A |z| = B z số ảo C Phần thực z số âm D z số thực không dương √ Câu 42 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 A ≤ |z| ≤ B |z| < C |z| > D < |z| < 2 2 Câu 43 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 250π 400π 125π 500π B C D A 9 Câu 44 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 33π 32π 31π A B C D 6π 5 Câu 45 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 2a+b+c C P = 2abc D P = 26abc Câu 46 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ ABC.A′ B′C ′ √ √ √ √ B 3a3 C 9a3 D 4a3 A 6a3 Câu 47 Chọn mệnh đề mệnh đề sau: R R e2x A e2x dx = +C B x dx =5 x + C R R (2x + 1)3 C (2x + 1)2 dx = + C D sin xdx = cos x + C Câu 48 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m > −2 C −4 ≤ m ≤ −1 D m < Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C √ Câu 50 Tính đạo hàm hàm số y = log4 x2 − x x x A y′ = B y′ = C y′ = (x − 1)log4 e (x − 1) ln 2(x − 1) ln D −4 D y′ = √ x2 − ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001