Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A −2 ≤ m ≤ B m = C < m < D −2 < m < Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 8π 32 32π B V = C V = D V = A V = 3 Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; −1; 2) C I(0; 1; −2) D I(1; 1; 2) Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2) B (−∞; 2] C (1; 2] D [2; +∞) Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y − 2z = B (P) : x − y + 2z = C (P) : x − 2y − = D (P) : x + y + 2z = Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tiếp tam giác BCD và√có chiều cao chiều cao tứ diện √ √ 2 √ π 2.a 2π 2.a π 3.a2 A π 3.a B C D 3 Câu Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (2; 3) C (12; +∞) D (−∞; 3) Câu 10 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −3 B C −2 D Câu 11 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (1; 3) B (−∞; 1) C (0; 2) D (3; +∞) Câu 12 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16π 16 A B C D 15 9 15 Trang 1/5 Mã đề 001 Câu 13 Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với x ∈ R Hàm số cho đồng biến khoảng đây? A (2; +∞) B (1; +∞) C (1; 2) D (−∞; 1) Câu 14 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 B C D A Câu 15 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (−2; 0) B (0; −2) C (2; 0) D (0; 2) x2 − 16 x2 − 16 Câu 16 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 193 B 184 C 186 D 92 Câu 17 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B C −7 D 2017 + 2i + i Câu 18 Số phức z = có tổng phần thực phần ảo 2−i A -1 B C D Câu 19 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B C −9 D 10 Câu 20 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực phần ảo 2i C Phần thực là3 phần ảo D Phần thực −3 phần ảo là−2 − 2i (1 − i)(2 + i) + Câu 21 Phần thực số phức z = 2−i + 3i 29 11 29 11 A − B − C D 13 13 13 13 Câu 22 Những số sau vừa số thực vừa số ảo? A C.Truehỉ có số B Khơng có số C D Chỉ có số Câu 23 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = 2ki B A = 2k C A = D A = Câu 24 Cho hai √ số phức z1 = + i z2√= − 3i Tính mô-đun số phức z1 + z2 B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = A |z1 + z2 | = Câu 25 Tìm số phức liên hợp số phức z = i(3i + 1) A z = + i B z = −3 − i C z = − i D z = −3 + i Câu 26 Hàm số f (x) thoả mãn f ′ (x) = x x là: A x2 x + C B x2 + x+1 + C C (x + 1) x + C D (x − 1) x + C x+1 Câu 27 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(−1; −4; 4) C C(1; 0; 2) D C(−1; 0; −2) Câu 28 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) B F(x) = f ′ (x) + C C F ′ (x) + C = f (x) D F ′ (x) = f (x) Câu 29 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = 10 D I = Trang 2/5 Mã đề 001 R2 Câu 30 Tính tích phân I = xe x dx A I = e2 B I = 3e2 − 2e C I = −e2 D I = e Câu 31 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ 1√ A f (x)dx = 2x + + C B f (x)dx = 2x + + C R R √ C f (x)dx = √ + C D f (x) = 2x + + C 2x + R2 Câu 32 Tích phân I = (2x − 1) có giá trị bằng: A B C D Câu 33 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z − = C 2x + y − z − = D −2x + y − z + = √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 34 Cho a, b, c số thực z = − + 2 A a2 + b2 + c2 + ab + bc + ca B C a + b + c D a2 + b2 + c2 − ab − bc − ca √ Câu 35 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm Q D điểm N Câu 36 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = + i C A = D A = −1 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 B P = (|z| − 4)2 C P = (|z| − 2)2 D P = |z|2 − A P = |z|2 − √ Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 B Pmax = C Pmax = D Pmax = A Pmax = Câu 39 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B C D 18 Câu 40 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = −2016 C P = D P = z+1 Câu 41 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = 2 Câu 42 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 43 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ → − → − −u + 3→ −v = (1; 14; 15) A u + v = (2; 14; 14) B 2→ −u + 3→ −v = (1; 13; 16) −u + 3→ −v = (3; 14; 16) C 2→ D 2→ Trang 3/5 Mã đề 001 Câu 44 Biết π R2 sin 2xdx = ea Khi giá trị a là: A B − ln Câu 45 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B C ln D ax + b 2x )e + C Khi giá trị a + b là: C D Câu 46 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 2mn + 2n + m B log2 2250 = 2mn + n + n C log2 2250 = 2mn + n + n D log2 2250 = 3mn + n + n Câu 47 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A 12 B C D Câu 48 Trong khơng gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = A R = B R = C R = √ 15 D R = √ 14 Câu 49 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 10π C 12π D 8π Câu 50 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < −1 B m > 1 C m > m < − D m < −2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001