1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (548)

5 1 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 123,58 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A √ Câu Tìm tất khoảng đồng biến hàm số y = x − x + 2017 1 C (0; ) D (0; 1) A (1; +∞) B ( ; +∞) 4 Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −1 B f (−1) = C f (−1) = −5 D f (−1) = −3 Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B C − D 6 Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = D yCD = 36 Câu Đạo hàm hàm số y = log √2 3x − là: 6 B y′ = C y′ = D y′ = A y′ = (3x − 1) ln (3x − 1) ln 3x − ln 3x − ln Câu Cho x, y, z ba số thực khác thỏa mãn x = 5y = 10−z Giá trị biểu thức A = xy + yz + zxbằng? A B C D √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A C B a D 2 Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) A lna B ln C ln D ln(6a2 ) Câu 10 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x3 − 3x − B y = C y = x2 − 4x + D y = x4 − 3x2 + x−1 x−2 y−1 z−1 Câu 11 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 R4 R4 R4 Câu 12 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B −1 C D Câu 13 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (−6; 7) C (7; 6) D (7; −6) Câu 14 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (0; 1) B (1; 0) C (−1; 2) D (1; 2) Trang 1/5 Mã đề 001 Câu 15 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 48 B 89 C 90 D 49 Câu 16 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (−1; −2; −3) C (1; 2; 3) D (2; 4; 6) Câu 17 Tìm số phức liên hợp số phức z = i(3i + 1) B z = − i C z = −3 + i A z = −3 − i D z = + i Câu 18 Cho số phức z thỏa mãn √ = 6z − 25i √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w A 13 B 29 C D Câu 19 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 C −22016 D −21008 + Câu 20 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −10 B −9 C D 10 Câu 21 Với số phức z, ta có |z + 1|2 A |z|2 + 2|z| + B z + z + C z2 + 2z + D z · z + z + z + Câu 22 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 10i C −3 − 2i D −3 + 2i Câu 23 Những số sau vừa số thực vừa số ảo? A Chỉ có số B Khơng có số C C.Truehỉ có số D 4(−3 + i) (3 − i)2 Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ √ √ − 2i √ A |w| = 85 B |w| = 48 C |w| = D |w| = (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 25 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A z = z B |z| = C z số ảo D z = z Câu 26 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B −2 C D Câu 27 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) + C B F ′ (x) + C = f (x) C F ′ (x) = f (x) D F(x) = f ′ (x) Câu 28 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z − = B −2x + y − z + = C −2x + y − z + = D 2x + y − z − = Câu 29 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = C I = D I = 10 R2 Câu 30 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A −2024 B 2025 C D 2024 R1 3x − a a Câu 31 Biết dx = 3ln − , a, b nguyên dương phân số tối giản Hãy b b x + 6x + tính ab C ab = D ab = −5 A ab = 12 B ab = Trang 2/5 Mã đề 001 Câu 32 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z + = B 3x + 2y + z − = C 3x − 2y + z − 12 = D 3x − 2y + z − = Câu 33 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 0; 2) B C(1; 4; 4) C C(−1; 0; −2) D C(−1; −4; 4) Câu 34 Cho số phức z thỏa mãn |z| ≤ ĐặtA = A |A| ≤ B |A| < 2z − i Mệnh đề sau đúng? + iz C |A| ≥ D |A| > Câu 35 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | √ 2 Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ i Giá trị (a + bz + cz2 )(a + bz2 + cz) Câu 37 Cho a, b, c số thực z = − + 2 A B a2 + b2 + c2 − ab − bc − ca C a + b + c D a2 + b2 + c2 + ab + bc + ca Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B 13 C D Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ B C D A √ 2 √ Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 42 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = −1 B A = C A = D A = + i Câu 43 Tìm tất giá trị tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhỏ đoạn [ -1; 3] a, b cho a.b = −36 A m = m = −16 B m = m = −10 C m = D m = Trang 3/5 Mã đề 001 r Câu 44 Tìm tập xác định D hàm số y = log2 3x + x−1 A D = (−1; 4) B D = (−∞; −1] ∪ (1; +∞) C D = (−∞; 0) D D = (1; +∞) Câu 45 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = 2loga e B P = + 2(ln a)2 C P = D P = ln a Câu 46 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: A B C 12 D Câu 47 Cho tứ diện DABC, tam giácABC vng B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a A B C D 3 2 √ Câu 48 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình vơ nghiệm B Bất phương trình có nghiệm thuộc khoảng (−∞; 1) C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình với x ∈ (4; +∞) −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 49 Trong không gian với hệ trục tọa độ Oxyz, cho → −u + 3→ −v véc tơ 2→ −u + 3→ −v = (3; 14; 16) A 2→ −u + 3→ −v = (1; 13; 16) B 2→ −u + 3→ −v = (1; 14; 15) C 2→ −u + 3→ −v = (2; 14; 14) D 2→ Câu 50 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 15:59

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN