Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = 2x + 2017∣∣∣∣∣x∣∣∣∣∣ + 1 (1) Mệnh đề nào dưới đây là đúng[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng B Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 C Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ √ a a a 15 B C D A a 15 Câu Cho hàm số y = Câu Cho a > a , Giá trị alog A B √ a bằng? C D √ 3 a Câu Cho hình chóp S ABCD có cạnh đáy a thể tích Tìm góc mặt bên mặt đáy hình chóp cho A 450 B 600 C 300 D 1350 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 C [ ; 2] [22; +∞) D [22; +∞) A ( ; 2] [22; +∞) B ( ; +∞) 4 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − 2y − = B (P) : x − y + 2z = C (P) : x + y + 2z = D (P) : x − y − 2z = Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A m = B < m < C −2 ≤ m ≤ D −2 < m < Câu Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 90 B 49 C 89 D 48 Câu 10 Cho hình chóp S ABC có đáy tam giác vng B, S A vng góc với đáy S A = AB (tham khảo hình bên) Góc hai mặt phẳng (S BC) (ABC) A 90◦ B 30◦ C 60◦ D 45◦ Trang 1/5 Mã đề 001 Câu 11 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B C D A Câu 12 Có số nguyên x thỏa mãn log3 A 193 B 184 x2 − 16 x2 − 16 < log7 ? 343 27 C 92 D 186 Câu 13 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n2 = (1; −1; 1) B → n3 = (1; 1; 1) C → n1 = (−1; 1; 1) D → n4 = (1; 1; −1) R2 R2 Câu 14 Nếu f (x) = [ f (x) − 2] A −2 B C D Câu 15 Tập nghiệm bất phương trình log(x − 2) > A (3; +∞) B (−∞; 3) C (12; +∞) R4 R4 R4 Câu 16 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A −1 B C D (2; 3) D Câu 17 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = C P = 2i D P = − 2i (1 − i)(2 + i) Câu 18 Phần thực số phức z = + 2−i + 3i 29 11 11 29 A B C − D − 13 13 13 13 Câu 19 Tìm số phức liên hợp số phức z = i(3i + 1) A z = −3 + i B z = + i C z = −3 − i D z = − i Câu 20 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 21 Cho số phức z thỏa mãn z = luận đúng? A z số ảo B z = z (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết 1−i 1+i C z = z D |z| = Câu 22 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực là3 phần ảo C Phần thực phần ảo 2i D Phần thực là−3 phần ảo −2i 25 1 = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 B 17 C 31 D −31 Câu 23 Cho số phức z thỏa A −17 Câu 24 Số phức z = A -1 + 2i + i2017 có tổng phần thực phần ảo 2−i B C D Câu 25 Cho số phức z thỏa mãn √ = 6z − 25i √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w A 13 B 29 C D Câu R26 Mệnh đề nàoRsau sai? R A R ( f (x) − g(x)) = R f (x) − R g(x), với hàm số f (x); g(x) liên tục R B R ( f (x) + g(x)) R = f (x) + g(x), với hàm số f (x); g(x) liên tục R C R k f (x) = k f (x) với số k với hàm số f (x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Trang 2/5 Mã đề 001 Câu 27 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân bằng: A −2024 B 2025 C 2024 D R2 −1 f ′ (x) Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = R2 Câu 29 Tính tích phân I = xe x dx A I = e2 B I = e C I = −e2 D I = 3e2 − 2e R + lnx dx(x > 0) Câu 30 Nguyên hàm x 1 A ln2 x + lnx + C B x + ln2 x + C C ln2 x + lnx + C D x + ln2 x + C 2 Câu 31 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; 4) B (3; 1; 4) C (3; −1; −4) D (−3; −1; −4) Câu 32 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = 2023cos(2023x) B f (x) = cos(2023x) C f (x) = −2023cos(2023x) D f (x) = − cos(2023x) 2023 Câu 33 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x + 2y + 2z + 15 = B x − 2y + 2z − 15 = C x − 2y + 2z + 15 = D x + 2y + 2z − 15 = √ Câu 34 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm N Câu 35 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = B A = −1 C A = + i D A = z+1 Câu 36 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức √ phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ 85 97 A T = B T = C T = 13 D T = 13 3 z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A 2 B C D Câu 39 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 15 B 10 C D Trang 3/5 Mã đề 001 + z + z2 Câu 40 Cho số phức z (không phải số thực, số ảo) thỏa mãn số thực − z + z2 Khi mệnh đề sau đúng? B < |z| < C < |z| < D < |z| < A < |z| < 2 2 2 Câu 41 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = 34 + C P = D P = + Câu 43 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = x2 + mx + đạt cực tiểu điểm x = x+1 C m = D m = −1 Câu 44 Tìm tất giá trị tham số m để hàm số y = B m = A Khơng có m Câu 45 Hình phẳng giới hạn đồ thị hàm y = x2 +1 hai tiếp tuyến hai điểm A(−1; 2); B(−2; 5) có diện tích bằng: 1 1 B C D A 12 Câu 46 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính thể tích khối lăng trụ√ABC.A′ B′C ′ √ √ A 3a3 B 4a3 C 6a3 D 9a3 Câu 47 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 48 Tính thể tích khối trịn xoay tạo thành cho hình phẳng giới hạn đồ thị hàm y = x2 , trục Ox hai đường thẳng x = −1; x = quay quanh trục Ox 32π 31π 33π A B C D 6π 5 Câu 49 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B R3 |x2 − 2x|dx = − D (x2 − 2x)dx + 1 C R2 R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − (x2 − 2x)dx R2 R3 R3 |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx (x2 − 2x)dx −u = (2; 1; 3),→ −v = (−1; 4; 3) Tìm tọa độ Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho → → − → − véc tơ u + v −u + 3→ −v = (1; 14; 15) −u + 3→ −v = (3; 14; 16) A 2→ B 2→ −u + 3→ −v = (2; 14; 14) −u + 3→ −v = (1; 13; 16) C 2→ D 2→ Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001