Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề nào dưới đây đúng? A Hàm số[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hàm số y = x3 + 3x2 − 9x − 2017 Mệnh đề đúng? A Hàm số đồng biến khoảng (−3; 1) B Hàm số nghịch biến khoảng (1; +∞) C Hàm số nghịch biến khoảng (−∞; −3) D Hàm số nghịch biến khoảng (−3; 1) Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B [22; +∞) C [ ; 2] [22; +∞) D ( ; 2] [22; +∞) A ( ; +∞) 4 R5 dx Câu Biết = ln T Giá trị T là: 2x − √ A T = 81 B T = C T = D T = Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x − 2) + (y − 1) + (z + 1) = 3 R Câu Tính nguyên hàm cos 3xdx 1 A −3 sin 3x + C B sin 3x + C C − sin 3x + C D sin 3x + C 3 Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; 2) B I(0; −1; 2) C I(1; 1; 2) D I(0; 1; −2) Câu Một hình trụ có diện tích xung quanh 4π có thiết diện qua trục hình vng Tính thể tích khối trụ A 3π B 2π C 4π D π Câu Với a số thực dương tùy ý, ln(3a) − ln(2a) B ln(6a2 ) C ln D lna A ln Câu 10 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 30◦ C 45◦ D 60◦ ax + b Câu 11 Cho hàm số y = có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (2; 0) B (0; −2) C (0; 2) D (−2; 0) Câu 12 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (3; +∞) B (0; 2) C (−∞; 1) D (1; 3) Trang 1/5 Mã đề 001 Câu 13 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (6; 7) B (3; 4) C (2; 3) D (4; 5) Câu 14 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16π 16 16 16π B C D A 15 15 Câu 15 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D y−1 z−1 x−2 = = Gọi Câu 16 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 C D A B 3 Câu 17 Cho số phức z thỏa (1 − 2i)z + (1 + 3i) = 5i Khi điểm sau biểu diễn số phức z ? A P(−2; 3) B M(2; −3) C N(2; 3) D Q(−2; −3) Câu 18 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực B Mô-đun số phức z số thực không âm C Mô-đun số phức z số thực dương D Mô-đun số phức z số phức − 2i (1 − i)(2 + i) Câu 19 Phần thực số phức z = + 2−i + 3i 11 29 11 29 A − B C D − 13 13 13 13 Câu 20 Cho số phức z thỏa mãn √ = 6z − 25i √ z(1 + 3i) = 17 + i Khi mơ-đun số phức w A 13 B 29 C D Câu 21 Tính √ mơ-đun số phức z thỏa mãn z(2 − i) + 13i√= √ 34 34 A |z| = B |z| = 34 C |z| = 3 !2016 !2018 1+i 1−i Câu 22 Số phức z = + 1−i 1+i A B C −2 + 2i + i2017 Câu 23 Số phức z = có tổng phần thực phần ảo 2−i A B C D |z| = 34 D + i D -1 Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 2i B −3 + 2i C −3 − 10i D 11 + 2i Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu R26 Mệnh đề nàoRsau sai? R A R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R R B R k f (x) = k f (x)R với mọiRhằng số k với hàm số f (x) liên tục R C R ( f (x) − g(x)) = f (x) − g(x), với hàm số f (x); g(x) liên tục R D f ′ (x) = f (x) + C với hàm số f (x) có đạo hàm liên tục R Trang 2/5 Mã đề 001 Câu 27 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx + cosx + C B F(x) = sinx + cosx + C C F(x) = sinx − cosx + C D F(x) = −sinx − cosx + C −−→ Câu 28 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (3; 3; −1) C (−1; −1; −3) D (3; 1; 1) Câu 29 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x + 2)2 + y2 + z2 = B (x + 2)2 + y2 + z2 = C (x − 2)2 + y2 + z2 = D (x − 2)2 + y2 + z2 = Câu 30 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 0; 2) B C(−1; −4; 4) C C(−1; 0; −2) D C(1; 4; 4) Câu 31 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F(x) = f ′ (x) + C C F(x) = f ′ (x) D F ′ (x) + C = f (x) Câu 32 Tìm nguyên hàm F(x) hàm số f (x) = e x+1 , biết F(0) = e A F(x) = e x B F(x) = e2x C F(x) = e x+1 D F(x) = e x + Câu 33 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân bằng: A −2024 B 2024 C D 2025 R2 −1 f ′ (x) Câu 34 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm P B điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm S D điểm R Câu 35 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i C |w|min = D |w|min = A |w|min = B |w|min = 2 Câu 36 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | Câu 37 Gọi z1 ; z2 hai nghiệm phương trình z2 − z + = 0.Phần thực số phức [(i − z1 )(i − z2 )]2017 bao nhiêu? A 22016 B −21008 C 21008 D −22016 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm Q B điểm N bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P Câu 39 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C 2 D điểm M D Câu 40 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| A P = −2016 B P = C max T = D P = 2016 Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thỏa mãn |z| ≤ ĐặtA = B |A| > A |A| ≤ 2z − i Mệnh đề sau đúng? + iz C |A| < D |A| ≥ Câu 42 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 Câu 43 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −4 ≤ m ≤ −1 B m < C −3 ≤ m ≤ D m > −2 Câu 44 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 B C D A Câu 45 Hàm số hàm số sau đồng biến R 4x + A y = x4 + 3x2 B y = x+2 C y = −x3 − x2 − 5x D y = x3 + 3x2 + 6x − Câu 46 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+b+c B P = 2a+2b+3c C P = 26abc D P = 2abc Câu 47 Chọn mệnh đề mệnh đề sau: R3 R2 R3 2 A |x − 2x|dx = |x − 2x|dx − |x2 − 2x|dx B R3 |x − 2x|dx = − C D R3 R2 (x − 2x)dx + (x2 − 2x)dx R2 |x2 − 2x|dx = (x2 − 2x)dx + R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − R3 (x2 − 2x)dx (x2 − 2x)dx Câu 48 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A B 3π ln + C ln + π cos x F(− ) = π Khi giá trị sin x + cos x 6π D 6π ln + 5 √ Câu 49 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình với x ∈ (4; +∞) B Bất phương trình vơ nghiệm C Bất phương trình với x ∈ [ 1; 3] D Bất phương trình có nghiệm thuộc khoảng (−∞; 1) Câu 50 Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x3 + x, trục Oxvà hai đường thẳng x = −1; x = 23 25 27 29 B C D A 4 4 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001