Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân tại B và S A = a[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ √ Câu Cho hình chóp S ABC có S A⊥(ABC) Tam giác ABC vuông cân B S A = a 6, S B = a Tính góc SC mặt phẳng (ABC) A 600 B 1200 C 300 D 450 Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A π B C D −1 Câu Cho hình trụ có hai đáy hai đường trịn (O; r) (O′ ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = −7 C m = D m = Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 B [22; +∞) C ( ; 2] [22; +∞) D ( ; +∞) A [ ; 2] [22; +∞) 4 Câu Đường cong hình bên đồ thị hàm số nào? A y = x4 + B y = x4 + 2x2 + C y = −x4 + D y = −x4 + 2x2 + Câu Cho a > a , Giá trị alog A B D √ a bằng? C √ Câu Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (−1 ; 4) B (−2 ; 0) C (0 ; +∞) D (−∞ ; −2) ax + b có đồ thị đường cong hình vẽ bên Tọa độ giao điểm đồ thị cx + d hàm số cho trục hoành A (0 ; −2) B (0 ; 3) C (3; ) D (2 ; 0) 1 Câu 11 Cho hàm số f (x) = − x3 + (2m + 3)x2 − (m2 + 3m)x + Có giá trị nguyên 3 tham số m thuộc [−9; 9] để hàm số nghịch biến khoảng (1; 2)? A B C D 16 Câu 10 Cho hàm số y = Trang 1/4 Mã đề 001 Câu 12 Trên tập số phức, cho phương trình z2 + 2(m − 1)z + m + 2m = Có tham số m để phương trình cho có hai nghiệm phân biệt z1 ; z2 thõa mãn z1 + z2 = A B C D x−2 y−6 z+2 Câu 13 Trong không gian Oxyz, cho hai đường thẳng chéo d1 : = = −2 x−4 y+1 z+2 d2 : = = Gọi mặt phẳng (P) chứa d1 (P)song song với đường thẳng d2 Khoảng −2 cách từ điểm M(1; 1; 1) đến (P) √ A √ B 10 D √ C √ 10 53 Câu 14 Tính thể tích V khối trịn xoay quay hình phẳng giới hạn đồ thị (C) : y = − x2 trục hoành quanh trục Ox 512π 22π 7π A V = B V = C V = D V = 15 Câu 15 Tổng tất nghiệm phương trình log2 (6 − x ) = − x A B C D Câu 16 Trong không gian hệ trục tọa độ Oxyz, cho hai điểm M( 1; 0; 1) N( 3; 2; −1) Đường thẳng MN có phương trình tham số A x = − ty = tz = + t B x = + 2ty = 2tz = + t C x = + ty = tz = + t D x = + ty = tz = − t Câu 17 Biết x = nghiệm phương trình x2 + (m2 − 1)x − 8(m − 1) = (m tham số phức có phần ảo√âm) Khi đó, mơ-đun của√số phức w = m2 − 3m + i√bằng ? A |w| = B |w| = 73 C |w| = D |w| = Câu 18 Tìm tất giá trị thực tham số m để phương trình mz2 + 2mz − 3(m − 1) = khơng có nghiệm thực 3 B m ≥ C < m < D m < m > A ≤ m < 4 Câu 19 Biết z0 nghiệm phức có phần ảo dương phương trình z − 4z + 20 = Trên mặt phẳng tọa độ, điểm điểm biểu diễn số phức w = (1 + i)z0 − 2z0 ? A M4 (6; −14) B M2 (2; −10) C M3 (−2; 10) D M1 (6; 14) Câu 20 Tất bậc bốn tập số phức có tổng mơ-đun bao nhiêu? A B C D Câu 21 Biết phương trình z2 + mz − m + = có hai nghiệm số ảo Khi tham số thực m gần giá trị giá trị sau? A B C −4 D −1 Câu 22 Phương trình (2 − i)z + 3(1 + iz) = + 8i có nghiệm A z = − i B z = + i C z = −3 + i D z = −3 − i Câu 23 Gọi z1 , z2 hai nghiệm phức phương trình 2(1+i)z2 −4(2−i)z−5−3i = TổngT = |z1 |2 +|z2 |2 bao nhiêu? √ 13 13 B T = C T = D T = A T = Câu 24 Biết z = + i z = nghiệm phương trình z3 + az2 + bz + c = (với a, b ∈ R ) Khi tổng a + b + c bao nhiêu? A B −2 C D Câu 25 Gọi z1 , z2 , z3 ba nghiệm phức phương trình z3 −z2 +2 = Khi tổngP = |z1 +z2 +z3 +2−3i| bao nhiêu? √ √ A P = 13 B P = C P = D P = Trang 2/4 Mã đề 001 ax + b có đồ thị đường cong hình bên cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (−2; 0) B (0; 2) C (0; −2) Câu 26 Cho hàm số y = D (2; 0) Câu R27 Cho hàm số f (x) = cosx + x Khẳng định nàoRdưới đúng? A f (x) = sinx + x2 + C B f (x) = −sinx + x2 + C R R x2 x2 C f (x) = sinx + + C D f (x) = −sinx + + C 2 x2 − 16 x2 − 16 Câu 28 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 92 B 186 C 184 D 193 Câu 29 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B 17 C D 15 R4 R4 R4 Câu 30 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B C D −1 Câu 31 Có cặp số nguyên (x; y) thỏa mãnlog3 (x2 + y2 + x) + log2 (x2 + y2 ) ≤ log3 x + log2 (x2 + y2 + 24x)? A 89 B 48 C 90 D 49 Câu 32 Một hộp chứa 15 cầu gồm màu đỏ đánh số từ đến màu xanh đánh số từ đến Lấy ngẫu nhiên hai từ hộp đó, xác suất để lấy hai khác màu đồng thời tổng hai số ghi chúng số chẵn 18 B C D A 35 35 35 Câu 33 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D 2 z Câu 34 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 B C D A √ √ √ 42 √ Câu 35 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 Câu 36 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = + C P = 34 + D P = Câu 37 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm P bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm S D điểm R Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Trang 3/4 Mã đề 001 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu diễn ! số phức thuộc tập hợp ! sau đây? ! ! 9 A ; +∞ B ; C 0; D ; 4 4 Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − Câu 40 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A B 18 C D Câu 41 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A B √ C D 2 Câu 42 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 15 C D A 10 −a = (4; −6; 2) Phương Câu 43 Cho đường thẳng ∆ qua điểm M(2; 0; −1) có véctơ phương → trình tham số đường thẳng ∆ A x = −2 + 4ty = −6tz = + 2t C x = + 2ty = −3tz = + t B x = −2 + 2ty = −3tz = + t D x = + 2ty = −3tz = −1 + t Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm −−→ −−→ −−→ tọa độ điểm M thỏa mãn OM = 2AB − AC A M(−2; 6; −4) B M(−2; −6; 4) C M(5; 5; 0) D M(2; −6; 4) Câu 45 Số phức z = − 3i có phần ảo A −3 B D 3i π R4 Câu 46 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 − A 16 π2 + 16π − 16 B 16 C π2 + 16π − C 16 π2 + 15π D 16 √ Câu 47 Tập hợp điểm mặt phẳng toạ độ biểu diễn số phức z thoả mãn z + − 8i = đường trịn có phương trình: √ 2 A (x − 4)2 + (y + 8)2 = 20 B (x − 4) + (y + 8) = √ C (x + 4)2 + (y − 8)2 = D (x + 4)2 + (y − 8)2 = 20 Câu 48 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(5; −2) B M(−5; −2) C M(5; 2) D M(−2; 5) √ Câu √ 49 Cho hình chóp S.ABCD có đáy ABCD hình bình hành, cạnh AB = 2a, BC = 2a 2, OD = a Tam giác SAB nằm mặt phẳng vng góc với mặt phẳng đáy Gọi O giao điểm AC BD Tính khoảng cách d từ điểm O √ đến mặt phẳng (S AB) √ A d = a B d = a C d = 2a D d = a Câu 50 Cho số phức z = a + bi (a, b ∈ R) thỏa mãn z + + 3i − z i = Tính S = 2a + 3b A S = −6 B S = C S = D S = −5 - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001