Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho M(2;[.]
Tài liệu Pdf miễn phí LATEX ĐỀ KHẢO SÁT CHẤT LƯỢNG THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 ′ Câu Trong không gian với hệ tọa độ Oxyz cho M(2; 3; −1) Tìm tọa độ điểm M đối xứng với M qua mặt phẳng Oxz? A M ′ (−2; −3; −1) B M ′ (−2; 3; 1) C M ′ (2; 3; 1) D M ′ (2; −3; −1) Câu Tập tất giá trị tham số m để đồ thị hàm số y = log3 (x2 + x + 1) + 2x3 cắt đồ thị hàm số y = 3x2 + log3 x + m là: A S = (−∞; ln3) B S = [ 0; +∞) C S = [ -ln3; +∞) D S = (−∞; 2) Câu Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Tọa độ véc tơ pháp tuyến (P) A (−2; 1; 2) B (2; −1; 2) C (−2; −1; 2) D (2; −1; −2) Câu Một mặt cầu có diện tích 4πR2 thể tích khối cầu B πR3 C πR3 D 4πR3 A πR3 Câu Cho mãn a > b > Kết luận sau sai? √ √ √ √ √5 hai số thực a, bthỏa √5 − − A a < b eb D a > b B a Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = B m = 13 C m = −15 D m = −2 Câu R7 Công thức sai? A R cos x = sin x + C C a x = a x ln a + C R B R sin x = − cos x + C D e x = e x + C π π π x F( ) = √ Tìm F( ) Câu Biết F(x) nguyên hàm hàm số f (x) = cos x π π ln π π ln π π ln π π ln B F( ) = − C F( ) = − D F( ) = + A F( ) = + 4 4 4 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = 13 B m = −2 C m = −15 D m = Câu 10 Cho hình hộp ABCD.A′ B′C ′ D′ có đáy ABCD hình bình hành Hình chiếu vng góc A′ lên mặt phẳng (ABCD)trùng với giao điểm AC vàBD Biết S ABCD = 60a2 , AB = 10a, góc mặt bên (ABB′ A′ ) mặt đáy 450 Tính thể tích khối tứ diện ACB′ D′ theo a A 100a3 B 30a3 C 20a3 D 60a3 √ Câu 11 Cho hình phẳng (D) giới hạn đường y = x, y = x, x = quay quanh trục hồnh Tìm thể tích V khối trịn xoay tạo thành 10π π A V = B V = π C V = D V = 3 Câu 12 Tính diện tích S hình phẳng giới hạn đường y = x2 , y = −x 1 A S = B S = C S = D S = 6 Câu 13 Đồ thị hàm số sau nhận trục tung trục đối xứng? A y = x3 B y = x3 − 2x2 + 3x + 2 C y = x − 2x + D y = −x4 + 3x2 − Trang 1/5 Mã đề 001 Câu 14 Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh √ 2 A πRl B 2π l − R C 2πRl D π l2 − R2 Câu 15 Hàm số sau khơng có cực trị? A y = x4 + 3x2 + C y = x2 B y = cos x D y = x3 − 6x2 + 12x − Câu 16 Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P):2x − y + 2z + = Giao điểm (P) trục tung có tọa độ A (0; 1; 0) B (0; 0; 5) C (0; −5; 0) D (0; 5; 0) Câu 17 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 209 B C D A 105 21 210 210 Câu 18 Cho mặt phẳng (α) : 2x − 3y − 4z + = Khi đó, véctơ pháp tuyến (α)? −n = (−2; 3; 4) −n = (−2; 3; 1) −n = (2; −3; 4) −n = (2; 3; −4) A → B → C → D → Câu 19 Cho lăng trụ đứng ABC.A′ B′C ′ có cạnh BC = 2a, góc hai mặt phẳng (ABC) (A′ BC)bằng 600 Biết diện tích tam giác ∆A′ BC 2a2 Tính thể tích V khối lăng trụ ABC.A′ B′C ′ √ √ a3 2a3 B V = 3a3 C V = D V = a3 A V = 3 Câu 20 Tìm tất giá trị thực tham số mđể hàm số y = (m + 1)x4 − mx2 + có cực tiểu mà khơng có cực đại A −1 ≤ m ≤ B −1 ≤ m < C m < −1 D m > π R4 Câu 21 Cho hàm số f (x) Biết f (0) = f ′ (x) = sin2 x + 1, ∀x ∈ R, f (x) π2 + 16π − 16 A 16 R Câu 22 6x5 dxbằng π2 − B 16 π2 + 15π C 16 π2 + 16π − D 16 x + C D 6x6 + C Câu 23 Trong số phức z thỏa mãn z − i = z¯ − − 3i Hãy tìm z có mơđun nhỏ 27 6 27 27 A z = + i B z = − − i C z = − + i D z = − i 5 5 5 5 Câu 24 Hình chópS ABC có đáy tam giác vng B có AB = a, AC = 2a, S A vng góc với mặt phẳng√đáy, S A = 2a Gọi φ góc √ tạo hai mặt phẳng√(S AC), (S BC) Tính cos φ =? 15 3 A B C D 5 2 √3 a2 b Câu 25 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A B C − D 3 x3 Câu 26 Tìm tất giá trị tham số m để hàm số y = (m + 2) − (m + 2)x2 + (m − 8)x + m5 nghịch biến R A m ≤ −2 B m < −3 C m ≥ −8 D m ≤ x + 2x Câu 27 Khoảng cách hai điểm cực trị đồ thị hàm số y = là: x−1 √ √ √ √ A B 15 C D −2 A x6 + C B 30x4 + C C Trang 2/5 Mã đề 001 x−3 y−6 z−1 = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vuông góc với d1 cắt d2 có phương trình là: y−1 z−1 x y−1 z−1 x = = B = = A −1 −3 −3 x y−1 z−1 x−1 y z−1 C = = D = = −1 −1 −3 Câu 28 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : Câu 29 Một sinh viên A thời gian năm học đại học vay ngân hàng năm 10 triệu đồng với lãi suất A 46.538667 đồng B 48.621.980 đồng C 43.091.358 đồng D 45.188.656 đồng Câu 30 Trong hệ tọa độ Oxyz, cho A(1; 2; 3), B(−3; 0; 1) Mặt cầu đường kính AB có phương trình A (x + 1)2 + (y − 1)2 + (z − 2)2 = 24 B (x − 1)2 + (y + 1)2 + (z + 2)2 = √ C (x + 1)2 + (y − 1)2 + (z − 2)2 = D (x + 1)2 + (y − 1)2 + (z − 2)2 = Câu 31 Cho R4 f (x)dx = 10 −1 R4 f (x)dx = Tính f (x)dx −1 A −2 R1 B C D 18 Câu 32 Cường độ trận động đất M (richter) cho công thức M = log A − log A0 , với A biên độ rung chấn tối đa A0 biên độ chuẩn (hằng số) Đầu kỷ 20, trận động đất San Francisco có cường độ 8,3 độ Richter Trong năm đó, trận động đất khác Nam Mỹ có biên độ mạnh gấp lần Cường độ trận động đất Nam Mỹ có kết gần bằng: A 11 B 8,9 C 2,075 D 33,2 Câu 33 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m < −2 B m > m < −1 C m > D m > m < − Câu 34 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − R3 1 R3 R2 R3 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx |x2 − 2x|dx (x2 − 2x)dx Câu 35 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 36 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−3; 0) C (−1; 1) D (3; 5) Câu 37 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = x Câu 38 Tính tích tất nghiệm phương trình (log2 (4x))2 + log2 ( ) = 8 1 1 A B C D 64 128 32 Trang 3/5 Mã đề 001 Câu 39 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 40 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m < D m > −2 C −4 ≤ m ≤ −1 Câu 41 Cho tứ diện DABC, tam giác ABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, BC = 4a, DA = 5a Bán kính mặt cầu ngoại tiếp hình chóp DABC có bán kính √ √ √ √ 5a 5a 5a 5a B C D A 3 Câu 42 Cho hàm số y = f (x) xác định tập R có f ′ (x) = x2 − 5x + Khẳng định sau đúng? A Hàm số cho nghịch biến khoảng (3; +∞) B Hàm số cho nghịch biến khoảng (1; 4) C Hàm số cho đồng biến khoảng (−∞; 3) D Hàm số cho đồng biến khoảng (1; 4) Câu 43 Cho hàm số y = f (x) có đồ thị y = f ′ (3 − 2x) hình vẽ sau: Có giá trị nguyên tham số m ∈ [−2021; 2021] để hàm số g(x) = f ( x + 2021x + m) có điểm cực trị? A 2020 B 2019 Câu 44 Cho hàm số f (x) liên tục R C 2021 R2 ( f (x) + 2x) = Tính A −9 B D 2022 R2 f (x) C Câu 45 Đường thẳng y = tiệm cận ngang đồ thị đây? −2x + 1+x B y = C y = A y = x+1 x−2 − 2x D −1 D y = 2x − x+2 Câu 46 Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực đại đồ thị hàm số cho có tọa độ A (−1; −4) B (1; −4) C (0; −3) D (−3; 0) Câu 47 Trên mặt phẳng tọa độ, cho M(2; 3) điểm biểu diễn số phức z Phần thực z A −2 B C −3 D √ Câu 48 Cho hình thang cong (H) giới hạn đường y = x, y = 0, x = 0, x = Đường thẳng x = k (0 < k < 4) chia hình (H) thành hai phần có diện tích S S hình vẽ Để S = 4S giá trị k thuộc khoảng sau đây? A (3, 5; 3, 7)· B (3, 3; 3, 5)· C (3, 7; 3, 9)· D (3, 1; 3, 3)· Câu 49 Cho số phức z1 = − 4i; z2 = − i, phần ảo số phức z1 z2 A B −7 C D −1 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001