Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho tứ diện đều ABCD có cạnh bằng a Tính diện tích xung quanh của hình t[.]
Kiểm tra LATEX ĐỀ KIỂM TRA THPT MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường tròn ngoại √ √ tiếp tam giác BCD có chiều cao chiều√cao 2của tứ diện √ 2π 2.a2 π 3.a2 π 2.a B π 3.a D A C 3 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: B [2; +∞) A (1; 2] C (−∞; 2] D (1; 2) Câu Biết f (u)du = F(u) + C Mệnh đề đúng? R R A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(x) − + C R R C f (2x − 1)dx = 2F(2x − 1) + C D f (2x − 1)dx = F(2x − 1) + C R Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 Câu Cho a, b hai số thực dương Mệnh đề đúng? ln a a B ln(ab) = ln a ln b A ln( ) = b ln b C ln(ab2 ) = ln a + ln b D ln(ab2 ) = ln a + (ln b)2 R Câu Tính nguyên hàm cos 3xdx 1 C − sin 3x + C D −3 sin 3x + C A sin 3x + C B sin 3x + C 3 Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 1 C (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 3 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − 4m2 − m2 − 12 m2 − 12 A B C D 2m 2m 2m m Câu Cho hàm số y = f (x) có bảng biến thiên sau Hàm số y = f (x) nghịch biến khoảng khoảng đây? A (0 ; +∞) B (−2 ; 0) C (−1 ; 4) D (−∞ ; −2) Câu 10 Có cặp số nguyên (x; y) thỏa mãn log4 (9x2 + 16y2 + 112y) + log3 (9x2 + 16y2 ) < log4 y + log3 (684x2 + 1216y2 + 720y)? A 56 B 64 C 48 D 76 R Câu 11 Biết f (x)dx = sin 3x + C Mệnh đề sau mệnh đề đúng? cos 3x cos 3x A f (x) = B f (x) = cos 3x C f (x) = − D f (x) = −3 cos 3x 3 Câu 12 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Số giá trị nguyên tham số m để phương f (x + m) = m có ba nghiệm phân biệt? A B C D Trang 1/4 Mã đề 001 Câu 13 Choa,b số dương, a , 1sao cho loga b = 2, giá trị loga (a3 b) A B C D 3a Câu 14 Cho hình nón đỉnh S , đường trịn đáy tâm Ovà góc đỉnh 120◦ Một mặt phẳng qua S cắt hình nón theo thiết diện tam giác S AB Biết khoảng cách hai đường thẳng ABvà S Obằng 3, √ diện tích xung quanh hình nón cho 18π Tính diện tích tam giác S AB A 18 B 27 C 21 D 12 Câu 15 Cho đa giac đêu 12 đinh Chon ngâu nhiên đinh 12 đinh cua đa giac Xac suât đê 3đinh đươc chon tao tam giac đêu la 1 1 B P = C P = D P = A P = 55 14 220 Câu 16 Trong không gian Oxyz, cho mặt phẳng (P) : x − 3y + 5z − = Điểm thuộc mặt phẳng (P)? A N(1 ; ; 7) B M(0 ; ; 2) C Q(4 ; ; 2) D P(4 ; −1 ; 3) Câu 17 Biết x = nghiệm phương trình x2 + (m2 − 1)x − 8(m − 1) = (m tham số phức có phần ảo âm) Khi đó, mơ-đun √ số phức w = m2 − 3m +√i ? √ A |w| = B |w| = C |w| = D |w| = 73 Câu 18 Gọi z1 , z2 hai nghiệm phức phương trình 2(1+i)z2 −4(2−i)z−5−3i = TổngT = |z1 |2 +|z2 |2 bao nhiêu? √ 13 13 A T = B T = C T = D T = Câu 19 Biết z = − 3i nghiệm phương trình z2 + az + b = ( với a, b ∈ R ) Khi hiệu a − b A −8 B C 12 D −12 Câu 20 Tất bậc bốn tập số phức có tổng mơ-đun bao nhiêu? A B C D Câu 21 Tìm tất giá trị thực tham số m để phương trình mz2 + 2mz − 3(m − 1) = khơng có nghiệm thực 3 B m < m > C m ≥ D < m < A ≤ m < 4 Câu 22 Hai số phức z1 = + i z2 = − 3i nghiệm phương trình sau đây? A z2 + (5 − 2i)z − + 7i = B z2 − (1 + 4i)z + − 7i = C z2 − (5 − 2i)z + − 7i = D z2 + (1 + 4i)z − + 7i = Câu 23 Biết z = + i z = nghiệm phương trình z3 + az2 + bz + c = (với a, b ∈ R ) Khi tổng a + b + c bao nhiêu? A B C D −2 Câu 24 Biết z số phức thỏa mãn z2 + 3z + = Khi mơ-đun số phức w = z + ? √ √ √ √ A |w| = 2 B |w| = C |w| = D |w| = Câu 25 Tất bậc hai số phức z = 15 − 8i là: A − 2i −5 + 2i B + i −4 + i C − i + 3i D − i −4 + i Câu 26 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D ′ ′ ′ Câu 27 Cho khối lăng trụ đứng ABC · A B C √có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho Trang 2/4 Mã đề 001 √ a A √ B a C √ 2a3 √ a D Câu 28 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A −1 B C D R Câu 29 Cho dx = F(x) + C Khẳng định đúng? x A F ′ (x) = − B F ′ (x) = C F ′ (x) = D F ′ (x) = lnx x x x Câu 30 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường trịn Tâm đường trịn có tọa độ A (0; −2) B (−2; 0) C (0; 2) D (2; 0) Câu 31 Đồ thị hàm số có dạng đường cong hình bên? x−3 B y = x3 − 3x − C y = x4 − 3x2 + D y = x2 − 4x + A y = x−1 Câu 32 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln B ln(6a2 ) C lna D ln Câu 33 Xét số phức z thỏa mãn z2 − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ C 11 + D 14 A 28 B 18 + Câu 34 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = D P = C P = A P = 2 Câu 35 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = (|z| − 2)2 D P = |z|2 − √ Câu 36 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 − ab − bc − ca B a2 + b2 + c2 + ab + bc + ca C D a + b + c Câu 37 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm R D điểm P Câu 38 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i A |w|min = B |w|min = C |w|min = D |w|min = 2 √ Câu 39 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| < B |z| > C ≤ |z| ≤ D < |z| < 2 2 Trang 3/4 Mã đề 001 Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A B C √ D 2 Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu!diễn số phức thuộc tập hợp!nào sau đây? ! ! 9 B ; +∞ C ; D ; A 0; 4 4 √ Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = Câu 43 Cho tam giác nhọn ABC, biết quay tam giác quanh cạnh AB, BC, CA ta lần 3136π 9408π lượt hình trịn xoay tích 672π, , Tính diện tích tam giác ABC 13 A S = 1979 B S = 96 C S = 364 D S = 84 Câu 44 Cho hình chóp S ABCD có đáy hình vng ABCD cạnh a, cạnh bên S A vng góc với mặt phẳng đáy Biết S A = 3a, tính thể tích V khối chóp S ABCD a3 C V = a3 D V = 2a3 A V = 3a3 B V = Câu 45 Một hộp chứa sáu cầu trắng bốn cầu đen Lấy ngẫu nhiên đồng thời bốn Tính xác suất cho có màu trắng 1 209 A B C D 105 210 21 210 Câu 46 Số phức z = − 2i có điểm biểu diễn mặt phẳng tọa độ M Tìm tọa độ điểm M A M(−5; −2) B M(−2; 5) C M(5; −2) D M(5; 2) Câu 47 Cho hàm số y = f (x) có bảng biến thiên sau : Hàm số cho đồng biến khoảng đây? A (0; 1) B (−∞; 1) C (−1; 0) D (1; +∞) Câu 48 Hàm số y = (x + m)3 + (x + n)3 − x3 đồng biến khoảng (−∞; +∞) Giá trị nhỏ biểu thức P = 4(m2 + n2 ) − m − n −1 A −16 B C D 16 Câu 49 Với a số thực dương tùy ý, log5 (5a) A + log5 a B − log5 a C − log5 a D + log5 a Câu 50 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox A (P) : x − 2y + = B (P) : x − 2z + = C (P) : y + z − = x+1 y z−2 = = Viết 1 D (P) : y − z + = - - - - - - - - - - HẾT- - - - - - - - - - Trang 4/4 Mã đề 001