Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Đạo hàm của hàm số y = log√2 ∣∣∣∣∣3x − 1 ∣∣∣∣∣ là A y′ = 2∣∣∣∣∣3x − 1 ∣∣[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Đạo hàm hàm số y = log √2 3x − là: A y′ = 3x − ln B y′ = (3x − 1) ln C y′ = 3x − ln D y′ = (3x − 1) ln Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I √ trung điểm cạnh√CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng (A1 BK) √ a a 15 a B C D a 15 A 3 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: B (1; 2) C (1; 2] D [2; +∞) Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D √ x Câu Tìm nghiệm phương trình x = ( 3) A x = −1 B x = C x = D x = √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A B π C π D A (−∞; 2] 2x + 2017 (1) Mệnh đề đúng? x + A Đồ thị hàm số (1) khơng có tiệm cận ngang có hai tiệm cận đứng đường thẳng x = −1, x = B Đồ thị hàm số (1) có tiệm cận ngang đường thẳng y = khơng có tiệm cận đứng C Đồ thị hàm số (1) có hai tiệm cận ngang đường thẳng y = −2, y = khơng có tiệm cận đứng D Đồ thị hàm số (1) khơng có tiệm cận ngang có tiệm cận đứng đường thẳng x = −1 Câu Cho hàm số y = Câu Đồ thị hàm số có dạng đường cong hình bên? A y = x3 − 3x − B y = x4 − 3x2 + C y = x2 − 4x + D y = x−3 x−1 Câu 10 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Có giá trị ngun tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt? A B C D Câu 11 Tập nghiệm bất phương trình x+1 < A (−∞; 1] B (1; +∞) C (−∞; 1) D [1; +∞) Trang 1/5 Mã đề 001 x−1 y−2 z+3 Câu 12 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A Q(1; 2; −3) B M(2; −1; −2) C N(2; 1; 2) D P(1; 2; 3) Câu 13 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 90◦ B 45◦ C 60◦ D 30◦ Câu 14 Cho khối chóp S ABC có đáy tam giác vng cân A, AB = 2, S A vng góc với đáy S A = (tham khảo hình bên) Thể tích khối chóp cho A 12 B C D Câu 15 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) B C D A 2 Câu 16 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (12; +∞) C (−∞; 3) D (3; +∞) (1 + i)(2 + i) (1 − i)(2 − i) + Trong tất kết luận sau, kết Câu 17 Cho số phức z thỏa mãn z = 1−i 1+i luận đúng? A z = B z số ảo C |z| = D z = z z z2 Câu 18 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B C 13 D Câu 19 Tìm số phức liên hợp số phức z = i(3i + 1) B z = + i C z = −3 − i A z = −3 + i D z = − i Câu 20 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B 21008 C −21008 D −22016 Câu 21 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực là3 phần ảo C Phần thực phần ảo 2i D Phần thực là−3 phần ảo −2i Câu 22 Số phức z = A + 2i + i2017 có tổng phần thực phần ảo 2−i B C D -1 Câu 23 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 24 Với số phức z, ta có |z + 1|2 A z · z + z + z + B z2 + 2z + C z + z + Câu 25 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D |z|2 + 2|z| + D Trang 2/5 Mã đề 001 Câu 26 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(−1; −4; 4) C C(1; 0; 2) D C(−1; 0; −2) R + lnx Câu 27 Nguyên hàm dx(x > 0) x 1 A ln2 x + lnx + C B x + ln2 x + C C ln2 x + lnx + C D x + ln2 x + C 2 Câu 28 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B −2 C D Câu 29 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x + y − z − = B 6x + y − z − = C x + y − z + = D x − y + z + = R1 R R1 R1 Câu 30 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A −8 B −3 C 12 D Câu 31 Cho hàmR số f (x) liên tục khoảng (−2; 3) Gọi F(x) nguyên hàm f (x) khoảng (−2; 3) Tính I = −1 [ f (x) + 2x], biết F(−1) = F(2) = A I = B I = 10 C I = D I = Câu 32 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z − 15 = B x + 2y + 2z − 15 = C x − 2y + 2z + 15 = D x + 2y + 2z + 15 = Câu 33 Cho f (x) hàm số liên tục [a; b] (với a < b ) F(x) nguyên hàm f (x) [a; b] Mệnh đề đúng? A Diện tích S hình phẳng giới hạn hai đường thẳng x = a, x = b, đồ thị hàm số y = f (x) trục hồnh tính theo cơng thức S = F(b) − F(a) Rb B a k · f (x) = k[F(b) − F(a)] Ra C b f (x) = F(b) − F(a) b Rb D a f (2x + 3) = F(2x + 3) a Câu 34 Cho số phức z thỏa mãn |z2 − 2z + 5| = |(z − + 2i)(z + 3i − 1)| Tìm giá trị nhỏ |w|min |w|, với w = z − + 2i B |w|min = C |w|min = D |w|min = A |w|min = 2 Câu 35 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Câu 36 Cho ba số phức z1 , z2 , z3 thỏa mãn |z1 | = |z2 | = |z3 | = z1 +z2 +z3 = Tính A = z21 +z22 +z23 A A = + i B A = −1 C A = D A = Câu 37 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = z Câu 38 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D Trang 3/5 Mã đề 001 √ 2 Mệnh đề Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ √ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 40 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A 10 B C D 15 √ Câu 41 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | + 2|z √ bao nhiêu? √ √ √ + z3 | + 3|z3 + z1 | 10 B Pmax = C Pmax = D Pmax = A Pmax = √ Câu 42 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 A |z| > B |z| < C ≤ |z| ≤ D < |z| < 2 2 Câu 43 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 26abc B P = 2a+b+c C P = 2abc D P = 2a+2b+3c Câu 44 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −2 B C −4 D Câu 45 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 17 πa 15 πa 17 πa2 17 A B C D 4 Câu 46 Hàm số hàm số sau đồng biến R A y = x3 + 3x2 + 6x − B y = −x3 − x2 − 5x 4x + C y = D y = x4 + 3x2 x+2 Câu 47 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 6π B 12π C 10π D 8π r 3x + Câu 48 Tìm tập xác định D hàm số y = log2 x−1 A D = (−∞; 0) B D = (1; +∞) C D = (−∞; −1] ∪ (1; +∞) D D = (−1; 4) Câu 49 Cho hình lăng trụ đứng ABC.A′ B′C ′ có đáy ABC tam giác tù, AB = AC Góc tạo hai đường thẳng AA′ BC ′ 300 ; khoảng cách AA′ BC ′ a; góc hai mặt phẳng ′ ′ ′ (ABB′ A′ √ ) (ACC ′ A′ ) 600 Tính √ thể tích khối lăng trụ √ABC.A B C √ 3 B 4a C 6a D 3a3 A 9a Câu 50 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = −x4 + 2x2 C y = x3 − 3x2 D y = −2x4 + 4x2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001