1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (877)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 124,51 KB

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Biết ∫ f (u)du = F(u) +C Mệnh đề nào dưới đây đúng? A ∫ f (2x − 1)dx = F[.]

Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu R1 Biết f (u)du = F(u) + C Mệnh đề R đúng? A f (2x − 1)dx = F(2x − 1) + C B f (2x − 1)dx = 2F(2x − 1) + C R R D f (2x − 1)dx = 2F(x) − + C C f (2x − 1)dx = F(2x − 1) + C R Câu Tính diện tích hình phẳng giới hạn đồ thị hàm số y = x2 đường thẳng y = x 1 A B − C D 6 R Câu Tính nguyên hàm cos 3xdx 1 A −3 sin 3x + C B − sin 3x + C C sin 3x + C D sin 3x + C 3 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 32π 32 8π B V = C V = D V = A V = 5 Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V A B C D Câu Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = −7 B m = C m = D m = x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y − 2z = B (P) : x + y + 2z = C (P) : x − 2y − = D (P) : x − y + 2z = Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Cho hàm số y = ax4 + bx2 + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (1; 2) B (0; 1) C (−1; 2) D (1; 0) Câu 10 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (7; −6) B (−6; 7) C (6; 7) D (7; 6) Câu 11 Cho hình nón có đường kính đáy 2r độ dài đường sinh l Diện tích xung quanh hình nón cho A 2πrl B πrl2 C πr2 l D πrl 3 Câu 12 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) A B C D Trang 1/5 Mã đề 001 Câu 13 Cho số phức z = + 9i, phần thực số phức z2 A 36 B C 85 D −77 y−1 z−1 x−2 = = Gọi Câu 14 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 B C D A 3 R Câu 15 Cho dx = F(x) + C Khẳng định đúng? x 1 A F ′ (x) = B F ′ (x) = lnx C F ′ (x) = − D F ′ (x) = x x x Câu 16 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 90◦ C 60◦ D 30◦ Câu 17 Với số phức z, ta có |z + 1|2 C |z|2 + 2|z| + D z · z + z + z + A z2 + 2z + B z + z + 25 1 Câu 18 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B −17 C −31 D 17 Câu 19 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D 4 − 2i (1 − i)(2 + i) + Câu 20 Phần thực số phức z = 2−i + 3i 29 29 11 11 A B − C D − 13 13 13 13 Câu 21 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = 13 D |z1 + z2 | = Câu 22 Tìm số phức liên hợp số phức z = i(3i + 1) A z = + i B z = −3 − i C z = − i D z = −3 + i !2016 !2018 1+i 1−i Câu 23 Số phức z = + 1−i 1+i A B + i C D −2 4(−3 + i) (3 − i) Câu 24 Cho số phức z thỏa mãn z = + Mô-đun số phức w = z − iz + −i √ − 2i √ √ √ B |w| = 85 C |w| = 48 D |w| = A |w| = Câu 25 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B |z2 | = |z|2 C z − z = 2a D z + z = 2bi Câu 26 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; −4) B (3; 1; 4) C (−3; −1; 4) D (3; −1; −4) Câu 27 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − 12 = B 3x − 2y + z − = C 3x + 2y + z − = D 3x − 2y + z + = Câu 28 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = 2 C (x + 2) + y + z = D (x + 2)2 + y2 + z2 = Trang 2/5 Mã đề 001 Câu 29 Hàm số f (x) thoả mãn f ′ (x) = x x là: x+1 + C D x2 x + C A (x − 1) x + C B (x + 1) x + C C x2 + x+1 R1 R R1 R1 Câu 30 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A 12 B −3 C −8 D 1 R 3x − a a Câu 31 Biết dx = 3ln − , a, b nguyên dương phân số tối giản Hãy b b x + 6x + tính ab A ab = B ab = −5 C ab = 12 D ab = Câu 32 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 A F(x) = − e x + C B F(x) = − (2 − e x ) C F(x) = e x + D F(x) = (e x + 5) 2 2 Câu 33 Tìm hàm số F(x) không nguyên hàm hàm số f (x) = sin2x A F(x) = − cos2x B F(x) = −cos2 x C F(x) = sin2 x D F(x) = −cos2x z số thực Giá trị lớn Câu 34 Cho số phức z thỏa mãn z số thực ω = + z2 biểu thức √ M = |z + − i| √ A B 2 C D √ Câu 35 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B 2 C a + b + c − ab − bc − ca D a + b + c Câu 36 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ B P = C P = D P = A P = 2 2 = Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ C D √ A B 2 Câu 38 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 39 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i A |z| = B |z| = C |z| = D |z| = 2 Câu 40 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = B P = C P = −2016 D P = 2016 Câu 41 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 A T = B T = 13 C T = D T = 13 3 √ 2 Câu 42 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? Trang 3/5 Mã đề 001 √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 43 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) mặt phẳng (P) : x+2y+z−4 = Giả sử M(a; b; c) điểm mặt phẳng (P) cho MA2 +MB2 +2MC nhỏ Tính tổng a + b + c A B C D Câu 44 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 12a3 B 3a3 C 4a3 D 6a3 Câu 45 Tìm tất giá trị tham số m để hàm số y = mx3 + mx2 − x + nghịch biến R A −3 ≤ m ≤ B m < C −4 ≤ m ≤ −1 D m > −2 Câu 46 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 a3 15 a3 15 a3 15 B C D A 16 Câu 47 Bác An đem gửi tổng số tiền 320 triệu đồng ngân hàng A theo hình thức lãi kép, hai loại kỳ hạn khác Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, A 36080253 đồng C 36080255 đồng B 36080254 đồng D 36080251 đồng Câu 48 Biết a, b ∈ Z cho A R (x + 1)e2x dx = ( B ax + b 2x )e + C Khi giá trị a + b là: C D Câu 49 Tìm tất giá trị tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + có hai điểm cực trị nằm hai phía trục Ox A m > m < − B m < −2 C m > m < −1 D m > Câu 50 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001

Ngày đăng: 11/04/2023, 10:56