Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình hộp chữ nhật ABCD A′B′C′D′ có AB = a, AD = a √ 3 Tính khoảng cá[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a B C D a A 2 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m = B m , −1 C m , D m , Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Cho a, b hai số thực dương Mệnh đề đúng? a ln a A ln(ab2 ) = ln a + ln b B ln( ) = b ln b C ln(ab) = ln a ln b D ln(ab2 ) = ln a + (ln b)2 Câu Cho a > a , Giá trị alog A B √ a bằng? C D √ Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại tam giác BCD √ có chiều cao chiều cao tứ diện √ √ tiếp √ π 3.a 2π 2.a2 π 2.a2 A B C π 3.a D 3 Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vng với cạnh huyền 2a Tính thể tích khối nón √ √ 2π.a3 π 2.a3 π.a3 4π 2.a A B C D 3 3 Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 A (m ) B (m2 ) C 3(m2 ) D (m ) Câu Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = xπ−1 B y′ = πxπ C y′ = xπ−1 D y′ = πxπ−1 π Câu 10 Trong không gian Oxyz, cho hai điểm M(1; −1; −1) N(5; 5; 1) Đường thẳng MN có phương trìnhlà: x=5+t x = + 2t x = + 2t x = + 2t y = −1 + t y = −1 + 3t y = + 2t y = + 3t B C D A z = −1 + t z = −1 + 3t z = −1 + t z = + 3t Câu 11 Đồ thị hàm số có dạng đường cong hình bên? x−3 A y = x4 − 3x2 + B y = C y = x2 − 4x + D y = x3 − 3x − x−1 Câu 12 Cho hàm số y = f (x) có bảng biến thiên sau: Hàm số cho nghịch biến khoảng đây? A (3; +∞) B (−∞; 1) C (1; 3) D (0; 2) Trang 1/5 Mã đề 001 Câu 13 Trong không gian Oxyz, cho hai điểm A(0; 0; 10) B(3; 4; 6) Xét điểm M thay đổi cho tam giác OAM khơng có góc tù có diện tích 15 Giá trị nhỏ độ dài đoạn thẳng MB thuộc khoảng đây? A (6; 7) B (3; 4) C (2; 3) D (4; 5) Câu 14 Cho số phức z = + 9i, phần thực số phức z2 A B −77 C 36 D 85 Câu 15 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = − 6i có tọa độ A (6; 7) B (7; −6) C (7; 6) D (−6; 7) ax + b có đồ thị đường cong hình bên Câu 16 Cho hàm số y = cx + d Tọa độ giao điểm đồ thị hàm số cho trục hoành A (2; 0) B (0; −2) C (0; 2) D (−2; 0) (1 + i)(2 − i) Câu 17 Mô-đun số phức z = + 3i √ √ A |z| = B |z| = C |z| = D |z| = 2(1 + 2i) Câu 18 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A B 13 C D Câu 19 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 20 Tìm số phức liên hợp số phức z = i(3i + 1) B z = − i C z = −3 − i A z = −3 + i D z = + i Câu 21 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B P(−2; 3) C N(2; 3) D Q(−2; −3) Câu 22 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mơ-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 23 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số thực B Mô-đun số phức z số thực không âm D Mô-đun số phức z số phức √ Câu 24 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A m ≥ m ≤ −1 B m ≥ m ≤ C −1 ≤ m ≤ D ≤ m ≤ Câu 25 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A −3 − 10i B −3 − 2i C 11 + 2i D −3 + 2i R0 Câu 26 Giá trị −1 e x+1 dx A e − B e C −e D − e R4 R4 R3 Câu 27 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D R Câu 28 Tìm nguyên hàm I = xcosxdx x A I = x2 cos + C B I = xsinx − cosx + C x C I = xsinx + cosx + C D I = x2 sin + C Trang 2/5 Mã đề 001 Câu 29 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A −2 B C D Câu 30 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x − 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x + 2)2 + y2 + z2 = Câu 31 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F ′ (x) = f (x) B F(x) = f ′ (x) + C C F ′ (x) + C = f (x) D F(x) = f ′ (x) Câu 32 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z + = C −2x + y − z − = D 2x + y − z − = Câu 33 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = 2023cos(2023x) B f (x) = cos(2023x) C f (x) = −2023cos(2023x) D f (x) = − cos(2023x) 2023 Câu 34 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i B |z| = C |z| = D |z| = A |z| = Câu 35 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q B điểm S bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z C điểm P D điểm R Câu 36 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ B P = A P = C P = D P = 2 Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = |z|2 − B P = |z|2 − C P = (|z| − 4)2 D P = (|z| − 2)2 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm P bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm M C điểm N D điểm Q 2z − i Câu 39 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| ≥ B |A| < C |A| > D |A| ≤ Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 85 97 A T = C T = 13 D T = B T = 13 3 Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn nhất√của biểu thức P = |z1 | + |z2 | √ √ √ A P = 26 B P = + C P = D P = 34 + √ Câu 42 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 1 3 A |z| < B |z| > C < |z| < D ≤ |z| ≤ 2 2 Trang 3/5 Mã đề 001 Câu 43 Chọn mệnh đề mệnh đề sau: A R3 |x − 2x|dx = − B C R3 (x − 2x)dx + R3 1 R3 R2 |x2 − 2x|dx = |x2 − 2x|dx − |x − 2x|dx = (x − 2x)dx + R3 R3 (x2 − 2x)dx R2 D R2 |x2 − 2x|dx R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx 1 Câu 44 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 B C D A Câu 45 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = ln a B P = + 2(ln a)2 C P = 2loga e D P = Câu 46 Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6) Gọi M điểm nằm đoạn AB cho MA = 2MB Tìm tọa độ điểm M 11 17 A M( ; ; ) 3 21 B M( ; ; ) 3 10 31 C M( ; ; ) 3 10 16 D M( ; ; ) 3 Câu 47 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C A D = (−∞; 0) 3x + x−1 B D = (−1; 4) C D = (−∞; −1] ∪ (1; +∞) D D = (1; +∞) r Câu 48 Tìm tập xác định D hàm số y = D −3 log2 Câu 49 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a2 Tính thể tích khối chóp S ABC √ √ √ √ a3 a3 15 a3 15 a3 15 A B C D 16 Câu 50 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + n 3mn + n + C log2 2250 = n A log2 2250 = 2mn + n + n 2mn + 2n + D log2 2250 = m B log2 2250 = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001