Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a > 0 và a , 1 Giá trị của alog√a3 bằng? A √ 3 B 3 C 9 D 6 Câu 2 Tro[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu √ Cho a > a , Giá trị a A B log √a bằng? C D Câu Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) B(1; 0; 4) Tìm tọa độ trung điểm I đoạn thẳng AB A I(0; 1; −2) B I(0; −1; 2) C I(0; 1; 2) D I(1; 1; 2) Câu Tìm tất giá trị tham số m để hàm số y = mx − sin xđồng biến R A m ≥ B m ≥ C m > D m ≥ −1 √ d = 1200 Gọi K, Câu Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC I (A1 BK) √ √ trung điểm cạnh CC1 , BB1 Tính khoảng√cách từ điểm I đến mặt phẳng √ a a 15 a B a 15 D A C 3 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2) B (1; 2] C [2; +∞) D (−∞; 2] Câu Cắt hình nón mặt phẳng qua trục nó, ta thiết diện tam giác vuông với cạnh huyền 2a Tính thể tích khối nón √ √ 2π.a3 π 2.a3 4π 2.a3 π.a3 B C D A 3 3 Câu Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A [ ; 2] [22; +∞) B ( ; +∞) C [22; +∞) D ( ; 2] [22; +∞) 4 R Câu Tính nguyên hàm cos 3xdx 1 C −3 sin 3x + C D sin 3x + C A sin 3x + C B − sin 3x + C 3 Câu Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt phẳng (S CD) √ √ √ √ 3 A a B 2a C a D a 3 Câu 10 Tập nghiệm bất phương trình log(x − 2) > A (2; 3) B (−∞; 3) C (12; +∞) D (3; +∞) Câu 11 Thể tích khối trịn xoay thu quay hình phẳng giới hạn hai đường y = −x2 + 2x y = quanh trục Ox 16 16π 16π 16 A B C D 15 15 Câu 12 Tích tất nghiệm phương trình ln x + 2lnx − = 1 A B C −2 D −3 Câu 13 Cho số phức z = + 9i, phần thực số phức z2 A B −77 C 36 D 85 Trang 1/5 Mã đề 001 Câu 14 Cho khối lăng trụ đứng ABC · A′ B′C ′√có đáy ABC tam giác vuông cân B, AB = a Biết khoảng cách từ A đến mặt phẳng (A′ BC) a, thể tích khối lăng trụ cho √ √ √ √ 3 a B a C a D 2a3 A Câu 15 Cho hàm số y = ax + bx + c có đồ thị đường cong hình bên Điểm cực tiểu đồ thị hàm số cho có tọa độ A (−1; 2) B (1; 2) C (1; 0) D (0; 1) Câu 16 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 105 B 225 C 210 D 30 Câu 17 Tính √ mơ-đun số phức z√thỏa mãn z(2 − i) + 13i = √ 34 34 A |z| = B |z| = C |z| = 34 D |z| = 34 3 Câu 18 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực −3 phần ảo là−2 C Phần thực là3 phần ảo D Phần thực phần ảo 2i (1 + i)(2 − i) Câu 19 Mô-đun số phức z = √ + 3i √ A |z| = B |z| = C |z| = D |z| = 4(−3 + i) (3 − i)2 + Mô-đun số phức w = z − iz + Câu 20 Cho số phức z thỏa mãn z = −i √ √ √ √ − 2i A |w| = 48 B |w| = C |w| = D |w| = 85 Câu 21 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = B P = C P = + i D P = 2i Câu 22 Cho hai số phức z1 = + i z2 = − 3i Tính mơ-đun √ số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 z2 Câu 23 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ C D 11 A 13 B 2(1 + 2i) Câu 24 Cho số phức z thỏa mãn (2 + i)z + = + 8i Mô-đun số phức w = z + i + 1+i A 13 B C D Câu 25 2i, z2 = − i Giá trị của√biểu thức |z1 + z1 z2 | √ Cho số phức z1 = + √ √ A 10 B 30 C 130 D 10 Câu R26 Mệnh đề nàoRsau sai? R A R ( f (x) + g(x)) = f (x) + g(x), với hàm số f (x); g(x) liên tục R B R f ′ (x) = f (x) + CR với mọiR hàm số f (x) có đạo hàm liên tục R C R ( f (x) − g(x)) R = f (x) − g(x), với hàm số f (x); g(x) liên tục R D k f (x) = k f (x) với số k với hàm số f (x) liên tục R R2 Câu 27 Tính tích phân I = xe x dx A I = e2 B I = 3e2 − 2e C I = e D I = −e2 Câu 28 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 2 2 A F(x) = − (2 − e x ) B F(x) = − e x + C C F(x) = (e x + 5) D F(x) = e x + 2 2 ′ x Câu 29 Hàm số f (x) thoả mãn f (x) = x là: A x2 + x+1 x+1 + C B (x − 1) x + C C x2 x + C D (x + 1) x + C Trang 2/5 Mã đề 001 Câu 30 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A y − = B x + y + z − = C x − = D z − = −−→ Câu 31 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (−1; −1; −3) C (3; 1; 1) D (3; 3; −1) Câu 32 Hàm số y = F(x) nguyên hàm hàm số y = f (x) Hãy chọn khẳng định A F(x) = f ′ (x) + C B F(x) = f ′ (x) C F ′ (x) = f (x) D F ′ (x) + C = f (x) Câu 33 Trong không gian Oxyz, điểm đối xứng với điểm B(3; −1; 4) qua mặt phẳng (xOz) có tọa độ A (−3; −1; −4) B (3; −1; −4) C (3; 1; 4) D (−3; −1; 4) Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 2)2 B P = |z|2 − C P = (|z| − 4)2 D P = |z|2 − Câu 35 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ B 10 C D A 15 z Câu 36 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ 1 A B C D Câu 37 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 B T = 13 C T = D T = 13 A T = 3 √ Câu 38 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = điểm A hình vẽ bên điểm biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M B điểm Q bốn điểm M, N, P, Q Khi điểm biểu diễn iz C điểm P D điểm N Câu 39 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | z+1 Câu 40 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 C |z| = D |z| = A |z| = B |z| = Câu 41 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D Câu 42 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ biểu thức T = |z + 1| + 2|z √ − 1| A P = −2016 B P = C P = 2016 D max T = Câu 43 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + 3mn + n + A log2 2250 = B log2 2250 = n n Trang 3/5 Mã đề 001 2mn + n + n C log2 2250 = D log2 2250 = 2mn + 2n + m √ 2x − x2 + Câu 44 Đồ thị hàm số y = có số đường tiệm cận đứng là: x2 − A B C D Câu 45 Hàm số y = x4 − 4x2 + đồng biến khoảng khoảng sau A (1; 5) B (−3; 0) C (3; 5) Câu 46 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: A 6π ln + 5 B 3π ln + C ln + D (−1; 1) cos x π F(− ) = π Khi giá trị sin x + cos x 6π D 6π Câu 47 Trong không gian với hệ trục tọa độ Oxyz, tìm bán kính mặt cầu (S ) có phương trình x2 + y2 + z2 − 4x − 6y + 2z − = √ √ A R = 15 B R = C R = D R = 14 Câu 48 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 500π 400π 250π 125π A B C D 9 Câu 49 Biết π R2 sin 2xdx = ea Khi giá trị a là: A ln B − ln C D Câu 50 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A −4 B C D −2 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001