Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) x2 + y2 + z2 − 4z −[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S ) : x2 + y2 + z2 − 4z − = Bán kính R (S) bao nhiêu? √ √ A R = B R = 21 C R = 29 D R = Câu Tìm tất giá trị tham số m để hàm số y = (1 − m)x4 + 3x2 có cực tiểu mà khơng có cực đại A m < B m > C m ≥ D m ≤ Câu Cho lăng trụ ABC.A′ B′C ′ có tất cạnh a Tính khoảng cách hai đường thẳng AB′ BC ′ √ √ 2a 3a 5a a A √ D B √ C 5 x Câu Giá trị nhỏ hàm số y = tập xác định x +1 1 B y = C y = −1 D y = A y = − R R R R 2 Câu Đồ thị hàm số sau có vơ số đường tiệm cận đứng? 3x + A y = sin x B y = x−1 C y = tan x D y = x3 − 2x2 + 3x + A I = ln( m+2 ) 2m + Rm dx theo m? x + 3x + m+2 m+1 B I = ln( ) C I = ln( ) m+1 m+2 Câu Cho số thực dươngm Tính I = D I = ln( 2m + ) m+2 Câu Với giá trị tham số m tiếp tuyến có hệ số góc nhỏ đồ thị hàm số y = x3 + 6x2 + mx − qua điểm (11;1)? A m = −15 B m = −2 C m = 13 D m = Câu 8.√Hình nón có bán kính đáy √ R, đường sinh l diện tích xung quanh 2 A π l − R B 2π l2 − R2 C πRl D 2πRl Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện√tích lớn bằng? √ √ 3 3 A (m ) B (m ) C 3(m2 ) D (m2 ) Câu 10 Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 2; 0), B(3; 4; 1), D(−1; 3; 2) Tìm tọa độ điểm C cho ABCD hình thang có hai cạnh đáy AB, CD có góc C 450 A C(−3; 1; 1) B C(3; 7; 4) C C(1; 5; 3) D C(5; 9; 5) √ d = 1200 Gọi Câu 11 Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a BAC K, I trung điểm cạnh √ CC1 , BB1 Tính khoảng √ cách từ điểm I đến mặt √ phẳng (A1 BK) √ a 15 a a A a 15 B C D Câu 12 Cho a > a , Giá trị alog A B √ a bằng? C D √ Trang 1/5 Mã đề 001 Câu 13 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 2y + 4z − = mặt phẳng (P) : x + y − 3z + m − = Tìm tất m để (P)cắt (S ) theo giao tuyến đường trịn có bán kính lớn A m = B m = C m = D m = −7 y+2 z x−1 = = Viết phương Câu 14 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − 2y − = C (P) : x − y + 2z = D (P) : x − y − 2z = Câu 15 Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 36 B yCD = 52 C yCD = −2 D yCD = Câu 16 Cho hàm số y = f (x) xác định liên tục nửa khoảng (−∞; −2] [2; +∞), có bảng biến thiên hình bên Tìm tập hợp giá trị m để phương trình f (x) = m có hai nghiệm phân biệt S S 7 A ( ; 2] [22; +∞) B [22; +∞) C [ ; 2] [22; +∞) D ( ; +∞) 4 Câu 17 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 18 Cho số phức z = + 5i Tìm số phức w = iz + z A w = −3 − 3i B w = − 3i C w = + 7i D w = −7 − 7i 25 1 Câu 19 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 17 B 31 C −17 D −31 Câu 20 Cho số phức z thỏa (1 − 2i)z + (1 + 3i)2 = 5i Khi điểm sau biểu diễn số phức z ? A M(2; −3) B P(−2; 3) C N(2; 3) D Q(−2; −3) Câu 21 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 B (1 + i)2018 = −21009 C (1 + i)2018 = −21009 i D (1 + i)2018 = 21009 i Câu 22 Cho hai số phức z1 = + i z2√= − 3i Tính mơ-đun √ số phức z1 + z2 A |z1 + z2 | = B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = Câu 23 Những số sau vừa số thực vừa số ảo? A Khơng có số B C.Truehỉ có số C D Chỉ có số Câu 24 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z − z = 2a B z · z = a2 − b2 C z + z = 2bi D |z2 | = |z|2 Câu 25 Tính mơ-đun số phức z thỏa mãn z(2 − i) + 13i =√1 √ 34 A |z| = 34 B |z| = 34 C |z| = 1 Câu 26 Rút gọn biểu thức M = + + + ta được: loga x loga2 x logak x k(k + 1) k(k + 1) 4k(k + 1) A M = B M = C M = 2loga x 3loga x loga x Re lnn x Câu 27 Tính tích phân I = dx, (n > 1) x 1 A I = B I = C I = n + n−1 n+1 √ 34 D |z| = D M = k(k + 1) loga x D I = n Trang 2/5 Mã đề 001 (2 ln x + 3)3 : Câu 28 Họ nguyên hàm hàm số f (x) = x ln x + (2 ln x + 3)4 (2 ln x + 3)2 A + C B + C C + C 2 (2 ln x + 3)4 + C x−3 y−6 z−1 Câu 29 Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 : = = −2 d2 : x = ty = −tz = (t ∈ R) Đường thẳng qua điểm A(0; 1; 1), vng góc với d1 cắt d2 có phương trình là: x y−1 z−1 x y−1 z−1 A = = B = = −1 −1 −3 x y−1 z−1 x−1 y z−1 C = = D = = −3 −1 −3 √3 a2 b Câu 30 Biết loga b = 2, loga c = với a, b, c > 0; a , Khi giá trị loga ( ) c A B − C D 3 1 Câu 31 Tìm tất giá trị tham số m để đồ thị hàm số y = x3 − (m − 2)x2 + (m − 2)x + m2 có 3 hai điểm cực trị nằm phía bên phải trục tung? A m > B m < C m > m < D m > D Câu 32 Cho hình chóp S ABCcó S A vng góc với mặt phẳng (ABC), S A = a, AB = a, AC = 2a, d = 600 Tính thể tích khối cầu ngoại tiếp hình chóp S ABC BAC √ √ √ 20 5πa3 5 5 5π a B V = C V = πa D V = πa A V = 6 Câu 33 Cho log2 b = 3, log2 c = −4 Hãy tính log2 (b2 c) A B C D Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu √ thức P = |z1 | + |z2 | √ √ √ A P = 34 + B P = + C P = 26 D P = Câu 35 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | = Câu 36 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ B C D A √ 2 Câu 37 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 z Câu 38 Cho số phức z thỏa mãn z số thực ω = số thực Giá trị lớn + z2 biểu thức √ M = |z + − i| √ A 2 B C D √ Câu 39 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A B a2 + b2 + c2 − ab − bc − ca C a + b + c D a2 + b2 + c2 + ab + bc + ca Trang 3/5 Mã đề 001 Câu 40 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b = Tính T = |z1 | + |z2 | √ √ √ 85 97 B T = 13 A T = C T = 13 D T = 3 √ điểm A hình vẽ bên điểm Câu 41 (Chuyên Vinh- Lần 1) Cho số phức z thỏa mãn |z| = biểu diễn z Biết điểm biểu diễn số phức ω = số phức ω A điểm M bốn điểm M, N, P, Q Khi điểm biểu diễn iz B điểm N C điểm P D điểm Q = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp ! sau đây? ! ! 9 B ; C 0; D ; +∞ A ; 4 4 Câu 42 Cho số phức z thỏa mãn (3 − 4i)z − Câu 43 Cho tứ diện DABC, tam giácABC vuông B, DA vng góc với mặt phẳng (ABC) Biết AB = 3a, hình chóp DABC có bán √ kính √ BC = 4a, DA = 5a Bán√kính mặt cầu ngoại tiếp √ 5a 5a 5a 5a A B C D 2 Câu 44 Cho P = 2a 4b 8c , chọn mệnh đề mệnh đề sau A P = 2a+2b+3c B P = 26abc C P = 2abc D P = 2a+b+c Câu 45 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 − sin 3x)5 x+cos3x ln C y′ = (1 + sin 3x)5 x+cos3x ln D y′ = x+cos3x ln √ 2x − x2 + có số đường tiệm cận đứng là: Câu 46 Đồ thị hàm số y = x2 − A B C D Câu 47 Hàm số hàm số sau có đồ thị hình vẽ bên A y = −x4 + 2x2 + B y = x3 − 3x2 C y = −x4 + 2x2 D y = −2x4 + 4x2 Câu 48 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) √ mặt phẳng qua hai điểm A(1; 1; 1), B(0; 1; 2) khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) Giả sử phương trình mặt phẳng (P) có dạng ax + by + cz + = Tính giá trị abc A B −2 C −4 D d Câu 49 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng √ cách từ S đến mặt phẳng √ (ABC) A a B 2a C a D a Câu 50 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = (x2 − 2x)dx − (x2 − 2x)dx B R3 |x2 − 2x|dx = − C D R3 R2 (x2 − 2x)dx + R2 R3 1 R3 R2 R3 (x2 − 2x)dx |x2 − 2x|dx = (x2 − 2x)dx + |x2 − 2x|dx = |x2 − 2x|dx − R3 (x2 − 2x)dx |x2 − 2x|dx Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001