Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho a > 0 và a , 1 Giá trị của alog√a3 bằng? A 9 B 6 C 3 D √ 3 Câu 2 Giá[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho a > a , Giá trị a A B log √a bằng? C Câu Giá trị nhỏ hàm số y = 2x + cos xtrên đoạn [0; 1] bằng? A B π C −1 D √ D Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = −2 B yCD = 52 C yCD = 36 D yCD = √ Câu Cho hình hộp chữ nhật ABCD.A′ B′C ′ D′ có AB = a, AD = a Tính khoảng cách hai đường √ thẳng BB′ AC ′ √ √ √ a a a A B C D a 2 Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = ; y = 0; x = 0; x = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 B − ln C − ln − D ln − A ln + 2 2 Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − m2 − 12 4m2 − m2 − 12 B C D A 2m 2m m 2m x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − y − 2z = C (P) : x − 2y − = D (P) : x − y + 2z = Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối tròn xoay tạo thành quay (H) quanh trục Ox 32 8π 32π A V = B V = C V = D V = 5 Câu Cho hàm số f (x) liên tục R Gọi R 2F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 10 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: ln3 1 A y′ = B y′ = C y′ = − D y′ = xln3 x xln3 x Câu R11 Cho hàm số f (x) = cosx + x Khẳng định nàoRdưới đúng? A f (x) = sinx + x2 + C B f (x) = −sinx + x2 + C R R x x2 C f (x) = sinx + + C D f (x) = −sinx + + C 2 x−1 y−2 z+3 Câu 12 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A Q(1; 2; −3) B M(2; −1; −2) C N(2; 1; 2) D P(1; 2; 3) Trang 1/5 Mã đề 001 x−2 y−1 z−1 = = Gọi 2 −3 (P) mặt phẳng qua A chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) 11 A B C D 3 Câu 14 Cho tập hợp A có 15 phần tử Số tập gồm hai phần tử A A 210 B 225 C 30 D 105 Câu 13 Trong không gian Oxyz, cho điểm A(0; 1; 2) đường thẳng d : Câu 15 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 a C a D a A 2a B 3 Câu 16 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 1 A B C D 2 4(−3 + i) (3 − i) + Mô-đun số phức w = z − iz + Câu 17 Cho số phức z thỏa mãn z = −i √ √ √ √ − 2i A |w| = B |w| = 48 C |w| = 85 D |w| = Câu 18 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là−3 phần ảo −2i B Phần thực là3 phần ảo C Phần thực phần ảo 2i D Phần thực −3 phần ảo là−2 Câu 19 Cho hai √ số phức z1 = + i z2√= − 3i Tính mơ-đun số phức z1 + z2 B |z1 + z2 | = 13 C |z1 + z2 | = D |z1 + z2 | = A |z1 + z2 | = Câu 20 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 21 biểu thức |z1 + z1 z2 | √ Cho số phức z1 = +√2i, z2 = − i Giá trị √ √ A 30 B 130 C 10 D 10 Câu 22 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D 2017 + 2i + i Câu 23 Số phức z = có tổng phần thực phần ảo 2−i A B -1 C D (1 + i)(2 + i) (1 − i)(2 − i) Câu 24 Cho số phức z thỏa mãn z = + Trong tất kết luận sau, kết 1−i 1+i luận đúng? A |z| = B z = z C z = D z số ảo z (1 + i)2017 có phần thực phần ảo đơn vị? Câu 25 Số phức z = 21008 i A B C 21008 D Câu 26 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B −2x + y − z − = C −2x + y − z + = D 2x + y − z − = R0 Câu 27 Giá trị −1 e x+1 dx A e B e − C − e D −e Trang 2/5 Mã đề 001 Câu 28 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx + cosx + C B F(x) = −sinx − cosx + C C F(x) = sinx − cosx + C D F(x) = sinx + cosx + C Câu 29 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A x + y + z − = B x − = C z − = D y − = Câu 30 Biết R1 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy x2 + 6x + b b tính ab A ab = B ab = C ab = 12 D ab = −5 Câu 31 Trong hệ tọa độ Oxyz Mặt cầu tâm I(2; 0; 0) qua điểm M(1; 2; −2) có phương trình A (x + 2)2 + y2 + z2 = B (x − 2)2 + y2 + z2 = C (x + 2)2 + y2 + z2 = D (x − 2)2 + y2 + z2 = R1 R R1 R1 Câu 32 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A B −8 C −3 D 12 Câu 33 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x − 2y + 2z + 15 = B x + 2y + 2z + 15 = C x + 2y + 2z − 15 = D x − 2y + 2z − 15 = √ Câu 34 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a + b + c B a2 + b2 + c2 − ab − bc − ca C D a2 + b2 + c2 + ab + bc + ca Câu 35 (Sở Nam Định) Tìm mơ-đun số phức z biết z − = (1 + i)|z| − (4 + 3z)i B |z| = C |z| = D |z| = A |z| = Câu 36 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 15 C 10 D √ 2 Mệnh đề Câu 37 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 1.√ 2 C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3 √ √ √ 42 √ Câu 38 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z A < |z| < B < |z| < C < |z| < D < |z| < 2 2 Câu 39 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2√ z2 z1 √ A B C √ D 2 Câu 40 Cho số phức z thỏa mãn |z| = Tìm giá trị nhỏ của√biểu thức T = |z + 1| + 2|z − 1| A P = B P = 2016 C max T = D P = −2016 Trang 3/5 Mã đề 001 Câu 41 Cho số phức z thỏa mãn z + √ A B 13 = Tổng giá trị lớn nhỏ |z| z √ C D Câu 42 (Chuyên KHTH-Lần 4) Với hai số phức z1 , z2 thỏa mãn z1 + z2 = + 6i |z1 − z2 | = Tìm giá trị lớn biểu thức P = |z1 | + |z2 | √ √ √ √ A P = B P = 34 + C P = 26 D P = + Câu 43 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình nón đỉnh S đáy hình trịn nội tiếp tứ giác ABCD √ √ √ √ πa2 17 πa2 17 πa2 15 πa2 17 A B C D 4 Câu 44 Chọn mệnh đề mệnh đề sau: A Nếu a > a x = ay ⇔ x = y B Nếu a > a x > ay ⇔ x < y C Nếu a > a x > ay ⇔ x > y D Nếu a < a x > ay ⇔ x < y Câu 45 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = πRh + πR2 B S = 2πRl + 2πR2 C S = πRl + 2πR2 D S = πRl + πR2 Câu 46 Cho mặt cầu (S ) có bán kính R = 5, hình trụ (T )có hai đường trịn đáy nằm mặt cầu (S ) Thể tích khối trụ (T ) lớn √ √ √ √ 400π 125π 500π 250π A B C D 9 Câu 47 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = Câu 48 Biết hàm F(x) nguyên hàm hàm f (x) = F(0) bằng: 6π A B 6π ln + 5 C D m = π cos x F(− ) = π Khi giá trị sin x + cos x 3π ln + D ln + 6π Câu 49 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ 3 A B C D 2 Câu 50 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001