Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(0; 2; 3) B A(1; 0; 3) C A(0; 0; 3) D A(1; 2; 0) Câu Tìm giá trị cực đại yCD hàm số y = x3 − 12x + 20 A yCD = 52 B yCD = C yCD = 36 √ D yCD = −2 Câu Cho hàm số y = x− 2017 Mệnh đề đường tiệm cận đồ thị hàm số? A Khơng có tiệm cận ngang có tiệm cận đứng B Khơng có tiệm cận C Có tiệm cận ngang khơng có tiệm cận đứng D Có tiệm cận ngang tiệm cận đứng Câu Tìm tất giá trị tham số m cho đồ thị hai hàm số y = x3 + x2 y = x2 +3x+mcắt nhiều điểm A m = B −2 ≤ m ≤ C < m < D −2 < m < Câu Cho khối tứ diện ABCD tích V điểm M cạnh AB cho AB = 4MB Tính thể tích khối tứ diện B.MCD V V V V B C D A ; y = 0; x = 0; x = Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B ln − C − ln − D ln + 2 2 x−1 y+2 z Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x + y + 2z = B (P) : x − y − 2z = C (P) : x − 2y − = D (P) : x − y + 2z = Câu Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = ( m tham số thực) Có bao nhiêu giá trị m để phương trình có hai nghiệm phân biệt z1 , z2 thỏa mãn z1 + z2 = 2? A B C D Câu 10 Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn số phức z thỏa mãn z + 2i = đường tròn Tâm đường trịn có tọa độ A (−2; 0) B (0; 2) C (2; 0) D (0; −2) Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : x2 + y2 + z2 − 2x − 4y − 6z + = Tâm (S ) có tọa độ A (−2; −4; −6) B (2; 4; 6) C (−1; −2; −3) D (1; 2; 3) Câu 12 Cho cấp số nhân (un ) với u1 = công bội q = Giá trị u3 A B C D 2 Trang 1/5 Mã đề 001 Câu 13 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa độ A (−1; −2; −3) B (1; −2; 3) C (1; 2; −3) D (−1; 2; 3) Câu 14 Cho số phức z = + 9i, phần thực số phức z2 A −77 B 36 C D 85 2x + đường thẳng có phương trình: Câu 15 Tiệm cận ngang đồ thị hàm số y = 3x − 1 A y = − B y = − C y = D y = 3 3 Câu 16 Tích tất nghiệm phương trình ln x + 2lnx − = 1 B −3 C D −2 A Câu 17 Cho z số phức Xét mệnh đề sau : I Nếu z = z z số thực II Mô-đun √ z độ dài đoạnOM, với O gốc tọa độ M điểm biểu diễn số phức z III |z| = z · z A B C D Câu 18.√Cho số phức z1 = +√2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ B 130 C 30 D 10 A 10 Câu 19 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −22016 C 21008 D −21008 Câu 20 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D √ Câu 21 Cho số phức z = (m − 1) + (m + 2)i với m ∈ R Tập hợp tất giá trị m để |z| ≤ A ≤ m ≤ B −1 ≤ m ≤ C m ≥ m ≤ −1 D m ≥ m ≤ 2(1 + 2i) = + 8i Mô-đun số phức w = z + i + Câu 22 Cho số phức z thỏa mãn (2 + i)z + 1+i A B C D 13 Câu 23 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B z − z = 2a C z + z = 2bi D |z2 | = |z|2 Câu 24 Cho số phức z1 = − 2i Khi số phức w = 2z − 3z A 11 + 2i B −3 − 2i C −3 + 2i D −3 − 10i 4(−3 + i) (3 − i) + Mô-đun số phức w = z − iz + Câu 25 Cho số phức z thỏa mãn z = −i √ − 2i √ √ √ A |w| = B |w| = C |w| = 48 D |w| = 85 Câu 26 Tìm nguyên hàm hàm số f (x) = √ 2x + R R √ 1√ A f (x)dx = 2x + + C B f (x)dx = 2x + + C R R √ C f (x)dx = √ + C D f (x) = 2x + + C 2x + R1 3x − a a Câu 27 Biết dx = 3ln − , a, b nguyên dương phân số tối giản Hãy b b x + 6x + tính ab A ab = B ab = −5 C ab = D ab = 12 Trang 2/5 Mã đề 001 Câu 28 Cho hàm số f (x) liên tục R A B R4 f (x) = 10, C R4 f (x) = Tích phân D R3 f (x) Câu 29 Họ nguyên hàm hàm số f (x) = cosx + sinx A F(x) = −sinx + cosx + C B F(x) = −sinx − cosx + C C F(x) = sinx + cosx + C D F(x) = sinx − cosx + C Câu 30 Tìm hàm số F(x) khơng nguyên hàm hàm số f (x) = sin2x A F(x) = sin2 x Câu 31 Giá trị A e B F(x) = −cos2 x R0 −1 e x+1 dx B e − C F(x) = −cos2x D F(x) = − cos2x C −e D − e Câu 32 Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(−1; 2; 3), B(2; 4; 2) tọa độ trọng tâm G(0; 2; 1) Khi đó, tọa độ điểm C là: A C(1; 4; 4) B C(−1; −4; 4) C C(1; 0; 2) D C(−1; 0; −2) Câu 33 Cho hàm số f (x) có đạo hàm với x ∈ R f ′ (x) = 2x + Giá trị f (2) − f (1) A B C −2 D √ 2 Mệnh đề Câu 34 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 A |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = B |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 3√ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 z Câu 35 Cho số phức z , cho z số thực w = số thực Tính giá trị biểu + z2 |z| thức bằng? + |z|2 √ B C D A √ Câu 36 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Giá trị lớn biểu thức P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | bằng√bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 2z − i Câu 37 Cho số phức z thỏa mãn |z| ≤ ĐặtA = Mệnh đề sau đúng? + iz A |A| > B |A| ≤ C |A| ≥ D |A| < Câu 38 Cho số phức z , thỏa mãn A |z| = B |z| = z+1 số ảo Tìm |z| ? z−1 C |z| = D |z| = √ Câu 39 Cho a, b, c số thực z = − + i Giá trị (a + bz + cz2 )(a + bz2 + cz) 2 A a2 + b2 + c2 + ab + bc + ca B a + b + c C D a2 + b2 + c2 − ab − bc − ca Câu 40 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Trang 3/5 Mã đề 001 = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến |z| điểm biểu !diễn số phức thuộc tập hợp!nào sau đây? ! ! 1 B ; +∞ C 0; D ; A ; 4 4 Câu 41 Cho số phức z thỏa mãn (3 − 4i)z − Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 √ √ A √ B C D 2 Câu 43 Cho hình chóp S.ABCD có cạnh đáy a chiều cao 2a, diện tích xung quanh hình √ nón đỉnh S đáy hình√trịn nội tiếp tứ giác ABCD √ √ 2 πa 15 πa 17 πa 17 πa2 17 A B C D R ax + b 2x Câu 44 Biết a, b ∈ Z cho (x + 1)e2x dx = ( )e + C Khi giá trị a + b là: A B C D Câu 45 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 10π B 8π C 6π D 12π Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C −3 D Câu 47 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 3mn + n + 2mn + 2n + A log2 2250 = B log2 2250 = n m 2mn + n + 2mn + n + C log2 2250 = D log2 2250 = n n √ Câu 48 Cho bất phương trình 2(x−1)+1 − x ≤ x2 − 4x + Tìm mệnh đề A Bất phương trình có nghiệm thuộc khoảng (−∞; 1) B Bất phương trình với x ∈ (4; +∞) C Bất phương trình vơ nghiệm D Bất phương trình với x ∈ [ 1; 3] Câu 49 Chọn mệnh đề mệnh đề sau: R3 R2 R3 A |x2 − 2x|dx = − (x2 − 2x)dx + (x2 − 2x)dx B C D R3 R2 |x2 − 2x|dx = (x2 − 2x)dx − R3 1 R3 R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + 1 R3 R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − (x2 − 2x)dx (x2 − 2x)dx |x2 − 2x|dx Câu 50 Cho hình√chóp S ABCD có đáy ABCD hình vng Cạnh S A vng góc với mặt phẳng (ABCD); S A = 2a Góc hai mặt phẳng (S BC) (ABCD) 600 Gọi M, N trung điểm hai√cạnh AB, AD Tính khoảng MN S C √ √ √ cách hai đường thẳng 3a 30 3a a 15 3a A B C D 10 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001