Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tập nghiệm của bất phương trình log1 2 (x − 1) ≥ 0 là A (1; 2) B [2;+∞)[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tập nghiệm bất phương trình log (x − 1) ≥ là: A (1; 2) B [2; +∞) C (1; 2] D (−∞; 2] Câu Cho a, b hai số thực dương Mệnh đề đúng? A ln(ab2 ) = ln a + (ln b)2 B ln(ab2 ) = ln a + ln b a ln a C ln( ) = D ln(ab) = ln a ln b b ln b Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − m2 − 12 4m2 − m2 − 12 A B C D 2m m 2m 2m Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 B C D A √ sin 2x Câu Giá trị lớn hàm số y = ( π) R bằng? √ A B π C D π Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 2 2 2 C (S ) : (x + 2) + (y + 1) + (z − 1) = D (S ) : (x + 2) + (y + 1) + (z − 1) = 3 R Câu Tính nguyên hàm cos 3xdx 1 A −3 sin 3x + C B − sin 3x + C C sin 3x + C D sin 3x + C 3 ′ Câu Cho hình trụ có hai đáy hai đường tròn (O; r) (O ; r) Một hình nón có đỉnh O có đáy hình trịn (O′ ; r) Mặt xung quanh hình nón chia khối trụ thành hai phần Gọi V1 thể tích khối V1 nón, V2 thể tích phần cịn lại Tính tỉ số V2 V1 V1 V1 V1 A = B = C = D = V2 V2 V2 V2 800π Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Câu Cho khối nón có đỉnh S , chiều cao thể tích Câu 10 Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: A y′ = πxπ B y′ = xπ−1 C y′ = πxπ−1 π R2 R2 Câu 11 Nếu f (x) = [ f (x) − 2] A B C D y′ = xπ−1 D −2 Trang 1/5 Mã đề 001 Câu 12 Cho mặt phẳng (P) tiếp xúc với mặt cầu S (O; R) Gọi d khoảng cách từ O đến (P) Khẳng định đúng? A d < R B d > R C d = R D d = Câu 13 Tích tất nghiệm phương trình ln2 x + 2lnx − = 1 A −3 B C −2 D Câu 14 Cho hàm số y = f (x) có đạo hàm liên tục R thỏa mãn f (x)+x f ′ (x) = 4x3 +4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn đường y = f (x) y = f ′ (x) 1 B C D A Câu 15 Với a số thực dương tùy ý, ln(3a) − ln(2a) A ln(6a2 ) B lna C ln 3 D ln Câu 16 Trong không gian Oxyz, mặt phẳng (P) : x + y + z + = có vectơ pháp tuyến là: − − − − A → n1 = (−1; 1; 1) B → n3 = (1; 1; 1) C → n4 = (1; 1; −1) D → n2 = (1; −1; 1) Câu 17 Cho số phức z = a + bi(a, b ∈ R), mệnh đề sau, đâu mệnh đề đúng? A z · z = a2 − b2 B |z2 | = |z|2 C z + z = 2bi D z − z = 2a !2016 !2018 1+i 1−i Câu 18 Số phức z = + 1−i 1+i A B + i C D −2 Câu 19 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A 21008 B −21008 + C −21008 D −22016 Câu 20 Đẳng thức đẳng thức sau? A (1 + i)2018 = 21009 i B (1 + i)2018 = −21009 i C (1 + i)2018 = −21009 D (1 + i)2018 = 21009 Câu 21 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực −3 phần ảo là−2 B Phần thực là−3 phần ảo −2i C Phần thực phần ảo 2i D Phần thực là3 phần ảo 1 25 = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 B −17 C 17 D 31 Câu 22 Cho số phức z thỏa A −31 Câu 23 Cho mệnh đề sau: I Cho x, y hai số phức số phức x + y có số phức liên hợp x + y II Số phức z = a + bi (a, b ∈ R) z2 + (z)2 = 2(a2 − b2 ) III Cho x, y hai số phức số phức xy có số phức liên hợp xy IV Cho x, y hai số phức số phức x − y có số phức liên hợp x − y A B C D Câu 24 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = C P = 2i D P = Câu 25 Cho hai số phức z1 = + 2i z2 = − 3i Khi số phức w = 3z1 − z2 + z1 z2 có phần ảo bao nhiêu? A −9 B 10 C D −10 R2 Câu 26 Cho hàm số f (x) có đạo hàm đoạn [−1; 2] f (−1) = 2023, f (2) = −1 Tích phân −1 f ′ (x) bằng: A B −2024 C 2025 D 2024 R4 R4 R3 Câu 27 Cho hàm số f (x) liên tục R f (x) = 10, f (x) = Tích phân f (x) A B C D Trang 2/5 Mã đề 001 Câu 28 Biết R1 tính ab A ab = −5 x2 a a 3x − dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b D ab = −−→ Câu 29 Trong không gian Oxyz, cho hai điểm A(1; 1; −2) B(2; 2; 1) Vectơ AB có tọa độ A (1; 1; 3) B (−1; −1; −3) C (3; 3; −1) D (3; 1; 1) R1 R R1 R1 Câu 30 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A B −8 C −3 D 12 B ab = 12 C ab = Câu 31 Hàm số F(x) = sin(2023x) nguyên hàm hàm số cos(2023x) B f (x) = cos(2023x) A f (x) = − 2023 C f (x) = −2023cos(2023x) D f (x) = 2023cos(2023x) Câu 32 Trong không gian Oxyz, cho ba điểm A(0; 1; 2), B(2; −2; 1), C(−2; 1; 0) Khi mặt phẳng (ABC) có phương trình A x + y − z + = B 6x + y − z − = C x − y + z + = D x + y − z − = R2 Câu 33 Tính tích phân I = xe x dx A I = e B I = 3e2 − 2e C I = e2 D I = −e2 = Câu 34 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z1 √ z2 √ A B C D √ 2 √ √ √ 42 √ Câu 35 Cho số phức z thỏa mãn − 5i |z| = + 3i+ 15 Mệnh đề đúng? z B < |z| < C < |z| < D < |z| < A < |z| < 2 Câu 36 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A B C 13 D + z + z2 số thực Câu 37 Cho số phức z (không phải số thực, số ảo) thỏa mãn − z + z2 Khi mệnh đề sau đúng? 5 A < |z| < B < |z| < C < |z| < D < |z| < 2 2 2 z+1 Câu 38 Cho số phức z , thỏa mãn số ảo Tìm |z| ? z−1 A |z| = B |z| = C |z| = D |z| = √ 2 Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = Mệnh đề đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = Câu 40 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z2 | √ √ √ √ A P = B P = C P = D P = 2 Trang 3/5 Mã đề 001 √ Câu 41 Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 Mệnh đề đúng? 3 C ≤ |z| ≤ D < |z| < A |z| > B |z| < 2 2 Câu 42 Cho số phức z thỏa mãn |z| + z = Mệnh đề đúng? A z số thực không dương B Phần thực z số âm C z số ảo D |z| = Câu 43 Chọn mệnh đề mệnh đề sau: R R e2x (2x + 1)3 A e2x dx = +C B (2x + 1)2 dx = + C R R C x dx =5 x + C D sin xdx = cos x + C d Câu 44 Cho hình chóp S ABC có đáy ABC √ tam giác vuông A; BC = 2a; ABC = 60 Gọi Mlà trung điểm cạnh BC, S A = S C = S M = a Tính khoảng cách từ S đến mặt phẳng (ABC) √ √ A a B 2a C a D a 3x Câu 45 Tìm tất giá trị tham số mđể đồ thị hàm số y = cắt đường thẳng y = x + m x−2 hai điểm phân biệt A, B cho tam giác OAB nhận G(1; ) làm trọng tâm A Không tồn m B m = C m = −2 D m = Câu 46 Tính đạo hàm hàm số y = x+cos3x A y′ = (1 − sin 3x)5 x+cos3x ln B y′ = (1 + sin 3x)5 x+cos3x ln C y′ = x+cos3x ln D y′ = (1 − sin 3x)5 x+cos3x ln Câu 47 Một hình trụ (T ) có diện tích xung quanh 4π thiết diện qua trục hình trụ hình vng Diện tích tồn phần (T ) A 12π B 10π C 8π √ Câu 48 Tính đạo hàm hàm số y = log4 x2 − 1 x x A y′ = √ B y′ = C y′ = (x − 1)log4 e 2(x2 − 1) ln x2 − ln D 6π D y′ = x (x2 − 1) ln Câu 49 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình mặt phẳng (P) qua điểm −n (2; 1; −4) A(1; 2; 3) có véc tơ pháp tuyến → A 2x + y − 4z + = B 2x + y − 4z + = C −2x − y + 4z − = D 2x + y − 4z + = Câu 50 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001