Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Tính nguyên hàm ∫ cos 3xdx A −3 sin 3x +C B 1 3 sin 3x +C C 3 sin 3x +C[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Tính nguyên hàm R cos 3xdx 1 A −3 sin 3x + C B sin 3x + C C sin 3x + C D − sin 3x + C 3 Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = + 2ty = + (m − 1)tz = − t Tìm tất giá trị tham số m để d viết dạng tắc? A m = B m , −1 C m , D m , Câu Cho hình thang cân có độ dài đáy nhỏ hai cạnh bên mét Khi hình thang cho có diện tích lớn bằng? √ √ √ 3 3 (m2 ) C (m ) D 3(m2 ) A (m2 ) B Câu Cho a, b hai số thực dương, khác Đặt loga b = m, tính theo m giá trị P = loga2 b − log √b a3 m2 − m2 − 12 4m2 − m2 − 12 A B C D 2m 2m 2m m √ sin 2x R√bằng? Câu Giá trị lớn hàm số y = ( π) A π B C π D Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + B y = x4 + 2x2 + C y = −x4 + 2x2 + D y = x4 + Câu Trong không gian với hệ tọa độ Oxyz, cho điểm M(1; 2; 3) Tìm tọa độ điểm A hình chiếu M mặt phẳng (Oxy) A A(1; 0; 3) B A(1; 2; 0) C A(0; 0; 3) D A(0; 2; 3) Câu Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x + y − z − = Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) tiếp xúc với (P) A (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = B (S ) : (x − 2)2 + (y − 1)2 + (z + 1)2 = 3 C (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = D (S ) : (x + 2)2 + (y + 1)2 + (z − 1)2 = 800π Câu Cho khối nón có đỉnh S , chiều cao thể tích Gọi A B hai điểm thuộc đường tròn đáy cho AB = 12, khoảng cách từ tâm đường tròn đáy đến mặt phẳng (S AB) √ √ 24 A B C D 24 Câu 10 Trong không gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 45◦ B 60◦ C 90◦ D 30◦ Câu 11 Có giá trị nguyên tham số m để hàm số y = −x4 + 6x2 + mx có ba điểm cực trị? A B 15 C 17 D Câu 12 Với a số thực dương tùy ý, ln(3a) − ln(2a) A lna B ln(6a2 ) C ln R4 R4 R4 Câu 13 Nếu −1 f (x) = −1 g(x) = −1 [ f (x) + g(x)] A B −1 C D ln D Trang 1/5 Mã đề 001 Câu 14 Xét số phức z thỏa mãn z − − 4i = z Gọi M m giá trị lớn giá trị nhỏ z Giá trị M + m2 √ √ A 11 + B 14 C 28 D 18 + Câu 15 Tập nghiệm bất phương trình x+1 < A (1; +∞) B (−∞; 1] C [1; +∞) D (−∞; 1) Câu 16 Cho hình chóp S ABCD có chiều cao a, AC = 2a (tham khảo hình bên) Khoảng cách từ B đến mặt √phẳng (S CD) √ √ √ 3 a C a D a B A 2a 3 Câu 17 Số phức z thỏa mãn điều kiện (3 + i)z + (1 − 2i)2 = − 17i Khi hiệu phần thực phần ảo z A −3 B −7 C D Câu 18 Với số phức z, ta có |z + 1|2 A z2 + 2z + B z · z + z + z + C z + z + Câu 19 Trong kết luận sau, kết luận sai A Mô-đun số phức z số thực dương C Mô-đun số phức z số phức B Mô-đun số phức z số thực không âm D Mô-đun số phức z số thực D |z|2 + 2|z| + Câu 20.√Cho số phức z1 = + √ 2i, z2 = − i Giá trị √ biểu thức |z1 + z1 z2 | √ B 30 C 10 D 130 A 10 Câu 21 Cho P = + i + i2 + i3 + · · · + i2017 Đâu phương án xác? A P = + i B P = 2i C P = D P = Câu 22 √ Cho số phức z thỏa mãn z(1 + 3i) = 17 + i Khi √ mơ-đun số phức w = 6z − 25i A B 13 C 29 D z2 Câu 23 Cho số phức z1 = + 3i, z2 = − i Giá trị biểu thức z1 + z1 √ √ A 11 B 13 C D − 2i (1 − i)(2 + i) + 2−i + 3i 11 29 29 11 A − B − C D 13 13 13 13 25 1 Câu 25 Cho số phức z thỏa = + Khi phần ảo z bao nhiêu? z + i (2 − i)2 A 31 B −17 C 17 D −31 Câu 24 Phần thực số phức z = Câu 26 Cho hàm sốRy = f (x) có đạo hàm, liên tục R f (x) > x ∈ [0; 5] Biết f (x)· f (5− x) = 1, tính tích phân I = + f (x) 5 A I = B I = 10 C I = D I = Câu 27 Hàm số F(x) = sin(2023x) nguyên hàm hàm số A f (x) = cos(2023x) B f (x) = −2023cos(2023x) C f (x) = 2023cos(2023x) D f (x) = − cos(2023x) 2023 Câu 28 Hàm số f (x) thoả mãn f ′ (x) = x x là: A (x + 1) x + C B (x − 1) x + C C x2 + x+1 x+1 + C D x2 x + C Trang 2/5 Mã đề 001 R Câu 29 Tìm nguyên hàm I = xcosxdx x x A I = x2 sin + C B I = x2 cos + C 2 C I = xsinx − cosx + C D I = xsinx + cosx + C R1 R R1 R1 Câu 30 Cho f (x) = v a` g(x) = [ f (x) − 2g(x)] A 12 B C −8 D −3 Câu 31 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x + 2y + z − = B 3x − 2y + z + = C 3x − 2y + z − = D 3x − 2y + z − 12 = Câu 32 F(x) nguyên hàm hàm số y = xe x Hàm số sau F(x)? 1 2 A F(x) = − e x + C B F(x) = − (2 − e x ) C F(x) = e x + D F(x) = (e x + 5) 2 2 R + lnx Câu 33 Nguyên hàm dx(x > 0) x 1 A ln2 x + lnx + C B x + ln2 x + C C x + ln2 x + C D ln2 x + lnx + C 2 Câu 34 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 | + |z1 − z2 |2 A B C D 18 Câu 35 Giả sử z1 , z2 , , z2016 2016 nghiệm phức phân biệt phương trình z2016 +z2015 +· · ·+z+1 = 2017 Tính giá trị biểu thức P = z2017 + z2017 + · · · + z2017 2015 + z2016 A P = 2016 B P = C P = D P = −2016 Câu 36 (Chuyên Vinh- Lần 4) Cho số phức z có điểm biểu diễn M hình bên Biết điểm biểu diễn số phức ω = phức ω điểm nào? A điểm Q bốn điểm P, Q, R, S Hỏi điểm biểu diễn số z B điểm R C điểm S D điểm P 2z − i Mệnh đề sau đúng? Câu 37 Cho số phức z thỏa mãn |z| ≤ ĐặtA = + iz A |A| ≤ B |A| < C |A| ≥ D |A| > √ Giá trị lớn biểu thức Câu 38 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = P = |z1 + z2 | +√2|z2 + z3 | + 3|z3 + z1 | √ bao nhiêu? √ √ 10 A Pmax = B Pmax = C Pmax = D Pmax = 3 Câu 39 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A 13 B C D Câu 40 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 Câu 41 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 42 (Đặng Thức Hứa – Nghệ An) Cho số phức z1 , 0, z2 , thỏa mãn điều kiện + = z1 z2 z1 z2 Tính giá trị biểu thức P = + z1 + z2 z2 z1 Trang 3/5 Mã đề 001 √ B √ A D √ C Câu 43 Gọi l, h, R độ dài đường sinh, chiều cao bán kính đáy hình nón (N) Diện tích tồn phầnS hình nón (N) A S = 2πRl + 2πR2 B S = πRl + πR2 C S = πRl + 2πR2 D S = πRh + πR2 Câu 44 Gọi giá trị lớn giá trị nhỏ hàm số y = x4 − 4x đoạn [−1; 2] M, m Tính tổng M + m A B C D Câu 45 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n A log2 2250 = 2mn + n + n B log2 2250 = 2mn + 2n + m C log2 2250 = 3mn + n + n D log2 2250 = 2mn + n + n Câu 46 Hàm số hàm số sau đồng biến R A y = 4x + x+2 B y = x3 + 3x2 + 6x − C y = x4 + 3x2 D y = −x3 − x2 − 5x Câu 47 Cho biểu thức P = (ln a + loga e)2 + ln2 a − (loga e)2 , với < a , Chọn mệnh đề A P = B P = + 2(ln a)2 C P = 2loga e D P = ln a Câu 48 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh 3a; cạnh S A vng góc với mặt phẳng (ABCD), S A = 2a Tính thể tích khối chóp S ABCD A 12a3 B 4a3 C 3a3 D 6a3 Câu 49 Cho hàm số y = x2 − x + m có đồ thị (C) Tìm tất giá trị tham số m để tiếp tuyến đồ thị (C) giao điểm (C) với trục Oy qua điểm B(1; 2) A m = B m = C m = D m = Câu 50 Cho hình chóp S ABC có đáy ABC tam giác cạnh √ a Hai mặt phẳng (S AB), (S AC) vng góc với mặt phẳng (ABC), diện tích tam giác S BC a Tính thể tích khối chóp S ABC √ √ √ √ a3 15 a3 a3 15 a3 15 A B C D 16 Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001