Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Cho hình lập phương ABCD A′B′C′D′ có cạnh bằng a Tính thể tích khối chóp[.]
Free LATEX ĐỀ LUYỆN THI THPT QG MƠN TỐN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT (Đề kiểm tra có trang) Mã đề 001 Câu Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh a Tính thể tích khối chóp D.ABC ′ D′ a3 a3 a3 a3 A B C D Câu Cho tứ diện ABCD có cạnh a Tính diện tích xung quanh hình trụ có đáy đường trịn ngoại √ tiếp tam giác BCD có chiều cao chiều√cao 2của tứ diện √ √ 2π 2.a2 π 3.a2 π 2.a A B π 3.a D C 3 Câu Cho hình phẳng (H) giới hạn đường y = x2 ; y = 0; x = Tính thể tích V khối trịn xoay tạo thành quay (H) quanh trục Ox 8π 32π 32 A V = B V = C V = D V = 3 5 Câu Cho hàm số y = x − mx + Hỏi hàm số cho có nhiều điểm cực trị A B C D ; y = 0; x = 0; x = Câu Gọi S (t) diện tích hình phẳng giới hạn đường y = (x + 1)(x + 2)2 t(t > 0) Tìm lim S (t) t→+∞ 1 1 A − ln B − ln − C ln + D ln − 2 2 Câu Đường cong hình bên đồ thị hàm số nào? A y = −x4 + 2x2 + B y = x4 + 2x2 + C y = x4 + D y = −x4 + Câu Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x−1 y+2 z = = Viết phương −1 trình mặt phẳng (P) qua điểm M(2; 0; −1)và vng góc với d A (P) : x − y − 2z = B (P) : x + y + 2z = C (P) : x − y + 2z = D (P) : x − 2y − = Câu Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − f (0) = 1, f (1) = Tính f (−1) A f (−1) = −5 B f (−1) = −3 C f (−1) = −1 D f (−1) = Câu Trên khoảng (0; +∞), đạo hàm hàm số y = xπ là: π−1 x π Câu 10 Cho hàm số bậc ba y = f (x) có đồ thị đường cong hình bên Giá trị cực đại hàm số cho A B C −1 D A y′ = πxπ B y′ = πxπ−1 C y′ = xπ−1 D y′ = Câu 11 Cho hàm số f (x) liên tục R Gọi R F(x), G(x) hai nguyên hàm f (x) R thỏa mãn F(4) + G(4) = F(0) + G(0) = Khi f (2x) 3 A B C D Câu 12 Trong khơng gian Oxyz, góc hai mặt phẳng (Oxy) (Oyz) A 30◦ B 90◦ C 45◦ D 60◦ Câu 13 Tập nghiệm bất phương trình log(x − 2) > A (−∞; 3) B (2; 3) C (12; +∞) D (3; +∞) Trang 1/5 Mã đề 001 x−1 y−2 z+3 Câu 14 Trong không gian Oxyz, cho đường thẳng d : = = Điểm thuộc −1 −2 d? A N(2; 1; 2) B Q(1; 2; −3) C M(2; −1; −2) D P(1; 2; 3) x2 − 16 x2 − 16 Câu 15 Có số nguyên x thỏa mãn log3 < log7 ? 343 27 A 92 B 193 C 186 D 184 Câu 16 Trên khoảng (0; +∞), đạo hàm hàm số y = log3 x là: 1 ln3 A y′ = B y′ = − C y′ = D y′ = xln3 xln3 x x Câu 17 Cho số phức z thỏa mãn √ z(1 + 3i) = 17 + i Khi mơ-đun số phức√w = 6z − 25i A 13 B C D 29 Câu 18 Cho số phức z = − 2i.Tìm phần thực phần ảo số phức z A Phần thực là3 phần ảo B Phần thực là−3 phần ảo −2i C Phần thực −3 phần ảo là−2 D Phần thực phần ảo 2i !2016 !2018 1+i 1−i Câu 19 Số phức z = + 1−i 1+i A B + i C −2 D Câu 20 Phần thực số phức z = + (1 + i) + (1 + i)2 + · · · + (1 + i)2016 A −21008 + B −21008 C −22016 D 21008 Câu 21 Cho số phức z = + 5i Tìm số phức w = iz + z A w = + 7i B w = − 3i C w = −3 − 3i D w = −7 − 7i Câu 22 Tìm số phức liên hợp số phức z = i(3i + 1) B z = −3 − i C z = − i A z = −3 + i D z = + i Câu 23 Cho A = + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ Hỏi đâu phương án đúng? A A = B A = 2k C A = D A = 2ki − 2i (1 − i)(2 + i) + Câu 24 Phần thực số phức z = 2−i + 3i 29 11 11 29 A − B − C D 13 13 13 13 Câu 25 Cho hai √ số phức z1 = + i z2 = − 3i Tính mơ-đun số phức z1 + z2 √ A |z1 + z2 | = B |z1 + z2 | = C |z1 + z2 | = D |z1 + z2 | = 13 Câu 26 Phương trình mặt phẳng qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n = (−2; 1; −1) A −2x + y − z + = B 2x + y − z − = C −2x + y − z − = D −2x + y − z + = Câu 27 Tìm nguyên hàm hàm số f (x) = √ 2x + R R 1√ A f (x)dx = 2x + + C B f (x)dx = √ + C 2x + R R √ √ C f (x)dx = 2x + + C D f (x) = 2x + + C Câu 28 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương trình A x + 2y + 2z − 15 = B x + 2y + 2z + 15 = C x − 2y + 2z − 15 = D x − 2y + 2z + 15 = Câu 29 Biết R1 tính ab A ab = 12 x2 3x − a a dx = 3ln − , a, b nguyên dương phân số tối giản Hãy + 6x + b b B ab = −5 C ab = D ab = Trang 2/5 Mã đề 001 Câu 30 Tích phân I = A R2 (2x − 1) có giá trị bằng: B C D Câu 31 Trong hệ tọa độ Oxyz, cho bốn điểm A(0; 1; 1), B(1; 0; 1), C(0; 0; 1), I(1; 1; 1) Mặt phẳng qua I, song song với mặt phẳng (ABC) có phương trình là: A y − = B x + y + z − = C z − = D x − = Câu 32 Trong không gian Oxyz, cho ba điểm A(1; 3; 2), B(1; 2; 1), C(4; 1; 3) Mặt phẳng qua trọng tâm G tam giác ABC vng góc với đường thẳng AC có phương trình A 3x − 2y + z − = B 3x + 2y + z − = C 3x − 2y + z + = D 3x − 2y + z − 12 = Câu 33 Hàm số F(x) = sin(2023x) nguyên hàm hàm số cos(2023x) B f (x) = −2023cos(2023x) A f (x) = − 2023 C f (x) = cos(2023x) D f (x) = 2023cos(2023x) Câu 34 Cho z1 , z2 , z3 số phức thỏa mãn |z1 | = |z2 | = |z3 | = Khẳng định sau đúng? A |z1 + z2 + z3 | , |z1 z2 + z2 z3 + z3 z1 | B |z1 + z2 + z3 | > |z1 z2 + z2 z3 + z3 z1 | C |z1 + z2 + z3 | < |z1 z2 + z2 z3 + z3 z1 | D |z1 + z2 + z3 | = |z1 z2 + z2 z3 + z3 z1 | Câu 35 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω hai số thực a, b Biết z1 = ω + 2i z2 = 2ω − 3√là hai nghiệm phức phương trình z2 + az + b √ = Tính T = |z1 | + |z2 | √ √ 97 85 B T = 13 C T = D T = 13 A T = 3 Câu 36 Cho số phức z thỏa mãn z + = Tổng giá trị lớn nhỏ |z| z √ √ A 13 B C D Câu 37 (Đặng Thức Hứa – Nghệ An) Cho số phức z = a + bi(a, b ∈ R) thỏa mãn điều kiện|z2 + 4| = 2|z| Đặt P = 8(b2 − a2 ) − 12 Mệnh đề đúng? 2 2 A P = (|z| − 4)2 B P = |z|2 − C P = |z|2 − D P = (|z| − 2)2 Câu 38 Cho z1 , z2 hai số phức thỏa mãn |2z − 1| = |2 + iz|, biết |z1 − z2 | = Tính giá trị biểu thức P = |z1 + z√2 | √ √ √ A P = B P = C P = D P = 2 √ 2 Mệnh đề Câu 39 Cho z1 , z2 , z3 thỏa mãn z1 + z2 + z3 = |z1 | = |z2 | = |z3 | = đúng? √ 2 2 2 2 A |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = B |z1 + z2 | + |z2 + z3 | + |z3 + z1 | = √ C |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = D |z1 + z2 |2 + |z2 + z3 |2 + |z3 + z1 |2 = 2 Câu 40 Biết |z1 + z2 | = |z1 | = 3.Tìm giá trị nhỏ |z2 |? A B C D 2 Câu 41 Cho biết |z1 | + |z2 | = 3.Tìm giá trị nhỏ biểu thức.P = |z1 + z2 |2 + |z1 − z2 |2 A 18 B C D Câu 42 Cho số phứcz = a − + (b + 1)i với a, b ∈ Z và|z| = Tìm giá trị lớn biểu thức S = a√+ 2b √ √ √ A B 10 C 15 D cos x π Câu 43 Biết hàm F(x) nguyên hàm hàm f (x) = F(− ) = π Khi giá trị sin x + cos x F(0) bằng: 6π 6π 3π 6π A B ln + C ln + D ln + 5 5 Trang 3/5 Mã đề 001 Câu 44 Chọn mệnh đề mệnh đề sau: A R3 |x2 − 2x|dx = − B R3 C R3 R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = |x2 − 2x|dx − |x2 − 2x|dx R2 |x − 2x|dx = (x − 2x)dx − D (x2 − 2x)dx + 1 R3 R2 R3 (x2 − 2x)dx R2 R3 |x2 − 2x|dx = (x2 − 2x)dx + (x2 − 2x)dx 1 Câu 45 Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số đường thẳng (d) −u (2; 3; −5) qua điểm A(1; −2; 4) có véc tơ phương → x = + 2t x = − 2t x = + 2t x = −1 + 2t y = −2 − 3t y = −2 + 3t y = −2 + 3t y = + 3t A B C D z = − 5t z = + 5t z = − 5t z = −4 − 5t Câu 46 Hàm số y = x3 − 3x2 + có giá trị cực đại là: A B C D −3 Câu 47 Cho hình lăng trụ đứng ABCD.A′ B′C ′ D′ có đáy ABCD hình chữ nhật,AB = a; AD = 2a; AA′ = 2a Gọi α số đo góc hai đường thẳng AC DB′ Tính giá trị cos α √ √ √ B C D A 2 Câu 48 Cho hình chóp S ABC có đáy ABC tam giác cạnh a; cạnh S A vng góc với mặt phẳng (ABC), S A = 2a Gọi α số đo góc đường thẳng S B mp(S AC) Tính giá trị sin α √ √ √ 15 15 A B C D 10 Câu 49 Cho m = log2 3; n = log5 Tính log2 2250 theo m, n 2mn + n + n 2mn + 2n + C log2 2250 = m A log2 2250 = Câu 50 Biết π R2 2mn + n + n 3mn + n + D log2 2250 = n B log2 2250 = sin 2xdx = ea Khi giá trị a là: A B C − ln D ln Trang 4/5 Mã đề 001 - - - - - - - - - - HẾT- - - - - - - - - - Trang 5/5 Mã đề 001